Step * 2 1 2 1 2 1 1 of Lemma fun-converges-to-derivative


1. Interval
2. iproper(I)
3. : ℕ ⟶ I ⟶ℝ
4. f' : ℕ ⟶ I ⟶ℝ
5. I ⟶ℝ
6. I ⟶ℝ
7. ∀n:ℕ. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (f'[n;x] f'[n;y]))
8. lim n→∞.f[n;x] = λy.F[y] for x ∈ I
9. lim n→∞.f'[n;x] = λy.G[y] for x ∈ I
10. ∀n:ℕd(f[n;x])/dx = λx.f'[n;x] on I
11. : ℝ
12. r ∈ I
13. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (G[x] G[y]))
14. lim n→∞.r_∫-f'[n;t] dt = λx.r_∫-G[t] dt for x ∈ I
15. λx.G[x] ∈ {f:I ⟶ℝ| ∀x,y:{a:ℝa ∈ I} .  ((x y)  ((f x) (f y)))} 
16. d(r_∫-G[t] dt)/dx = λx.G[x] on I
17. : ℝ
18. d(r_∫-G[t] dt c)/dx = λx.G[x] r0 on I
19. λx.(r_∫-G[t] dt c) ∈ I ⟶ℝ
20. {x:ℝx ∈ I} 
21. F[x] (r_∫-G[t] dt c)
⊢ (r_∫-G[t] dt c) F[x]
BY
((Assert r_∫-G[t] dt c ∈ ℝ BY
          (Subst' r_∫-G[t] dt x.(r_∫-G[t] dt c)) THENA (Reduce THEN Auto)))
   THEN Auto
   }


Latex:


Latex:

1.  I  :  Interval
2.  iproper(I)
3.  f  :  \mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}
4.  f'  :  \mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}
5.  F  :  I  {}\mrightarrow{}\mBbbR{}
6.  G  :  I  {}\mrightarrow{}\mBbbR{}
7.  \mforall{}n:\mBbbN{}.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[n;x]  =  f'[n;y]))
8.  lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.F[y]  for  x  \mmember{}  I
9.  lim  n\mrightarrow{}\minfty{}.f'[n;x]  =  \mlambda{}y.G[y]  for  x  \mmember{}  I
10.  \mforall{}n:\mBbbN{}.  d(f[n;x])/dx  =  \mlambda{}x.f'[n;x]  on  I
11.  r  :  \mBbbR{}
12.  r  \mmember{}  I
13.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (G[x]  =  G[y]))
14.  lim  n\mrightarrow{}\minfty{}.r\_\mint{}\msupminus{}x  f'[n;t]  dt  =  \mlambda{}x.r\_\mint{}\msupminus{}x  G[t]  dt  for  x  \mmember{}  I
15.  \mlambda{}x.G[x]  \mmember{}  \{f:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))\} 
16.  d(r\_\mint{}\msupminus{}x  G[t]  dt)/dx  =  \mlambda{}x.G[x]  on  I
17.  c  :  \mBbbR{}
18.  d(r\_\mint{}\msupminus{}x  G[t]  dt  +  c)/dx  =  \mlambda{}x.G[x]  +  r0  on  I
19.  \mlambda{}x.(r\_\mint{}\msupminus{}x  G[t]  dt  +  c)  \mmember{}  I  {}\mrightarrow{}\mBbbR{}
20.  x  :  \{x:\mBbbR{}|  x  \mmember{}  I\} 
21.  F[x]  =  (r\_\mint{}\msupminus{}x  G[t]  dt  +  c)
\mvdash{}  (r\_\mint{}\msupminus{}x  G[t]  dt  +  c)  =  F[x]


By


Latex:
((Assert  r\_\mint{}\msupminus{}x  G[t]  dt  +  c  \mmember{}  \mBbbR{}  BY
                (Subst'  r\_\mint{}\msupminus{}x  G[t]  dt  +  c  \msim{}  (\mlambda{}x.(r\_\mint{}\msupminus{}x  G[t]  dt  +  c))  x  0  THENA  (Reduce  0  THEN  Auto)))
  THEN  Auto
  )




Home Index