Step
*
1
1
of Lemma
inv-sinh-sinh
1. x : ℝ
2. r0 ≤ ((sinh(x) * sinh(x)) + r1)
3. r0 < (sinh(x) + rsqrt((sinh(x) * sinh(x)) + r1))
4. r1 ≤ cosh(x)
5. cosh(x) = rsqrt((sinh(x) * sinh(x)) + r1)
⊢ (sinh(x) + cosh(x)) = expr(x)
BY
{ (RepUR ``sinh cosh`` 0 THEN (RWO "int-rdiv-req" 0 THENM nRMul ⌜r(2)⌝ 0⋅) THEN Auto) }
Latex:
Latex:
1. x : \mBbbR{}
2. r0 \mleq{} ((sinh(x) * sinh(x)) + r1)
3. r0 < (sinh(x) + rsqrt((sinh(x) * sinh(x)) + r1))
4. r1 \mleq{} cosh(x)
5. cosh(x) = rsqrt((sinh(x) * sinh(x)) + r1)
\mvdash{} (sinh(x) + cosh(x)) = expr(x)
By
Latex:
(RepUR ``sinh cosh`` 0 THEN (RWO "int-rdiv-req" 0 THENM nRMul \mkleeneopen{}r(2)\mkleeneclose{} 0\mcdot{}) THEN Auto)
Home
Index