Step * 1 1 1 2 2 1 1 of Lemma third-derivative-log-contraction-nonneg


1. {a:ℝr0 < a} 
2. : ℝ
3. |x rlog(a)| ≤ r1
4. ∀x:ℝ(r0 < (a e^x))
5. ∀x:ℝ. ∀n:ℕ+.  (r0 < e^x^n)
6. : ℝ
7. e^x b ∈ ℝ
8. r0 < b
9. a ≤ (b e^r1)
10. (b e^-(r1)) ≤ a
11. ((r(4) b) (r(4) b)) ≤ (r(16) b)
12. r0 < a
⊢ r0 ≤ ((r(-4) a^3) (r(16) b^2 a^2) (r(-4) b^3 a))
BY
((RWO  "rnexp2" THENA Auto) THEN nRNorm 0) }

1
1. {a:ℝr0 < a} 
2. : ℝ
3. |x rlog(a)| ≤ r1
4. ∀x:ℝ(r0 < (a e^x))
5. ∀x:ℝ. ∀n:ℕ+.  (r0 < e^x^n)
6. : ℝ
7. e^x b ∈ ℝ
8. r0 < b
9. a ≤ (b e^r1)
10. (b e^-(r1)) ≤ a
11. ((r(4) b) (r(4) b)) ≤ (r(16) b)
12. r0 < a
⊢ r0 ≤ ((r(-4) a^3 b) (r(-4) b^3 a) (r(16) b))


Latex:


Latex:

1.  a  :  \{a:\mBbbR{}|  r0  <  a\} 
2.  x  :  \mBbbR{}
3.  |x  -  rlog(a)|  \mleq{}  r1
4.  \mforall{}x:\mBbbR{}.  (r0  <  (a  +  e\^{}x))
5.  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (r0  <  a  +  e\^{}x\^{}n)
6.  b  :  \mBbbR{}
7.  e\^{}x  =  b
8.  r0  <  b
9.  a  \mleq{}  (b  *  e\^{}r1)
10.  (b  *  e\^{}-(r1))  \mleq{}  a
11.  ((r(4)  *  a  *  a  *  a  *  b)  +  (r(4)  *  a  *  b  *  b  *  b))  \mleq{}  (r(16)  *  a  *  a  *  b  *  b)
12.  r0  <  a
\mvdash{}  r0  \mleq{}  ((r(-4)  *  b  *  a\^{}3)  +  (r(16)  *  b\^{}2  *  a\^{}2)  +  (r(-4)  *  b\^{}3  *  a))


By


Latex:
((RWO    "rnexp2"  0  THENA  Auto)  THEN  nRNorm  0)




Home Index