Step
*
of Lemma
equal-functors
∀[A,B:SmallCategory]. ∀[F,G:Functor(A;B)].
(F = G ∈ Functor(A;B)) supposing
((∀x,y:cat-ob(A). ∀f:cat-arrow(A) x y.
((arrow(F) x y f) = (arrow(G) x y f) ∈ (cat-arrow(B) (ob(F) x) (ob(F) y)))) and
(∀x:cat-ob(A). ((ob(F) x) = (ob(G) x) ∈ cat-ob(B))))
BY
{ (Auto
THEN OnVar `F' DFunctor⋅
THEN OnVar `G' DFunctor⋅
THEN All Reduce
THEN EqTypeCD
THEN Reduce 0
THEN Auto
THEN EqCD
THEN Auto) }
Latex:
Latex:
\mforall{}[A,B:SmallCategory]. \mforall{}[F,G:Functor(A;B)].
(F = G) supposing
((\mforall{}x,y:cat-ob(A). \mforall{}f:cat-arrow(A) x y. ((arrow(F) x y f) = (arrow(G) x y f))) and
(\mforall{}x:cat-ob(A). ((ob(F) x) = (ob(G) x))))
By
Latex:
(Auto
THEN OnVar `F' DFunctor\mcdot{}
THEN OnVar `G' DFunctor\mcdot{}
THEN All Reduce
THEN EqTypeCD
THEN Reduce 0
THEN Auto
THEN EqCD
THEN Auto)
Home
Index