Step
*
of Lemma
groupoid-square-commutes-iff
∀[G:Groupoid]. ∀[x,y1,y2,z:cat-ob(cat(G))]. ∀[x_y1:cat-arrow(cat(G)) x y1]. ∀[y1_z:cat-arrow(cat(G)) y1 z].
∀[x_y2:cat-arrow(cat(G)) x y2]. ∀[y2_z:cat-arrow(cat(G)) y2 z].
uiff(x_y1 o y1_z = x_y2 o y2_z;y2_z
= (cat-comp(cat(G)) y2 x z groupoid-inv(G;x;y2;x_y2) (cat-comp(cat(G)) x y1 z x_y1 y1_z))
∈ (cat-arrow(cat(G)) y2 z))
BY
{ (Auto THEN All (RepUR ``cat-square-commutes``) THEN (HypSubst' (-1) 0 THENA Auto)) }
1
1. G : Groupoid
2. x : cat-ob(cat(G))
3. y1 : cat-ob(cat(G))
4. y2 : cat-ob(cat(G))
5. z : cat-ob(cat(G))
6. x_y1 : cat-arrow(cat(G)) x y1
7. y1_z : cat-arrow(cat(G)) y1 z
8. x_y2 : cat-arrow(cat(G)) x y2
9. y2_z : cat-arrow(cat(G)) y2 z
10. (cat-comp(cat(G)) x y1 z x_y1 y1_z) = (cat-comp(cat(G)) x y2 z x_y2 y2_z) ∈ (cat-arrow(cat(G)) x z)
⊢ y2_z
= (cat-comp(cat(G)) y2 x z groupoid-inv(G;x;y2;x_y2) (cat-comp(cat(G)) x y2 z x_y2 y2_z))
∈ (cat-arrow(cat(G)) y2 z)
2
1. G : Groupoid
2. x : cat-ob(cat(G))
3. y1 : cat-ob(cat(G))
4. y2 : cat-ob(cat(G))
5. z : cat-ob(cat(G))
6. x_y1 : cat-arrow(cat(G)) x y1
7. y1_z : cat-arrow(cat(G)) y1 z
8. x_y2 : cat-arrow(cat(G)) x y2
9. y2_z : cat-arrow(cat(G)) y2 z
10. y2_z
= (cat-comp(cat(G)) y2 x z groupoid-inv(G;x;y2;x_y2) (cat-comp(cat(G)) x y1 z x_y1 y1_z))
∈ (cat-arrow(cat(G)) y2 z)
⊢ (cat-comp(cat(G)) x y1 z x_y1 y1_z)
= (cat-comp(cat(G)) x y2 z x_y2 (cat-comp(cat(G)) y2 x z groupoid-inv(G;x;y2;x_y2) (cat-comp(cat(G)) x y1 z x_y1 y1_z)))
∈ (cat-arrow(cat(G)) x z)
Latex:
Latex:
\mforall{}[G:Groupoid]. \mforall{}[x,y1,y2,z:cat-ob(cat(G))]. \mforall{}[x$_{y1}$:cat-arrow(cat(G)) x y1]. \000C\mforall{}[y1$_{z}$:cat-arrow(cat(G))
y1
z].
\mforall{}[x$_{y2}$:cat-arrow(cat(G)) x y2]. \mforall{}[y2$_{z}$:cat-arrow(cat\000C(G)) y2 z].
uiff(x$_{y1}$ o y1$_{z}$ = x$_{y2}$ o \000Cy2$_{z}$;y2$_{z}$
= (cat-comp(cat(G)) y2 x z groupoid-inv(G;x;y2;x$_{y2}$) (cat-comp(cat(G)) x y\000C1 z x$_{y1}$ y1$_{z}$)))
By
Latex:
(Auto THEN All (RepUR ``cat-square-commutes``) THEN (HypSubst' (-1) 0 THENA Auto))
Home
Index