Step
*
of Lemma
mk-adjunction_wf
∀[A,B:SmallCategory]. ∀[F:Functor(A;B)]. ∀[G:Functor(B;A)]. ∀[eps:b:cat-ob(B) ⟶ (cat-arrow(B) (ob(F) (ob(G) b)) b)].
∀[eta:a:cat-ob(A) ⟶ (cat-arrow(A) a (ob(G) (ob(F) a)))].
(mk-adjunction(b.eps[b];a.eta[a]) ∈ F -| G) supposing
((∀a1,a2:cat-ob(A). ∀g:cat-arrow(A) a1 a2.
((cat-comp(A) a1 (ob(G) (ob(F) a1)) (ob(G) (ob(F) a2)) eta[a1]
(arrow(G) (ob(F) a1) (ob(F) a2) (arrow(F) a1 a2 g)))
= (cat-comp(A) a1 a2 (ob(G) (ob(F) a2)) g eta[a2])
∈ (cat-arrow(A) a1 (ob(G) (ob(F) a2))))) and
(∀b1,b2:cat-ob(B). ∀g:cat-arrow(B) b1 b2.
((cat-comp(B) (ob(F) (ob(G) b1)) b1 b2 eps[b1] g)
= (cat-comp(B) (ob(F) (ob(G) b1)) (ob(F) (ob(G) b2)) b2 (arrow(F) (ob(G) b1) (ob(G) b2) (arrow(G) b1 b2 g))
eps[b2])
∈ (cat-arrow(B) (ob(F) (ob(G) b1)) b2))) and
counit-unit-equations(A;B;F;G;λb.eps[b];λa.eta[a]))
BY
{ (((Intros THEN MemTypeCD THEN Try ((RepUR ``mk-adjunction mk-nat-trans`` 0 THEN Trivial)))
THENW (D -1 THEN D -2 THEN D -1 THEN All (RepUR ``functor-comp id_functor``) THEN Auto)
)
THEN RepUR ``mk-adjunction`` 0
THEN RepeatFor 2 (MemCD)
THEN All (RepUR ``functor-comp id_functor``)
THEN Auto) }
Latex:
Latex:
\mforall{}[A,B:SmallCategory]. \mforall{}[F:Functor(A;B)]. \mforall{}[G:Functor(B;A)]. \mforall{}[eps:b:cat-ob(B) {}\mrightarrow{} (cat-arrow(B)
(ob(F) (ob(G) b))
b)].
\mforall{}[eta:a:cat-ob(A) {}\mrightarrow{} (cat-arrow(A) a (ob(G) (ob(F) a)))].
(mk-adjunction(b.eps[b];a.eta[a]) \mmember{} F -| G) supposing
((\mforall{}a1,a2:cat-ob(A). \mforall{}g:cat-arrow(A) a1 a2.
((cat-comp(A) a1 (ob(G) (ob(F) a1)) (ob(G) (ob(F) a2)) eta[a1]
(arrow(G) (ob(F) a1) (ob(F) a2) (arrow(F) a1 a2 g)))
= (cat-comp(A) a1 a2 (ob(G) (ob(F) a2)) g eta[a2]))) and
(\mforall{}b1,b2:cat-ob(B). \mforall{}g:cat-arrow(B) b1 b2.
((cat-comp(B) (ob(F) (ob(G) b1)) b1 b2 eps[b1] g)
= (cat-comp(B) (ob(F) (ob(G) b1)) (ob(F) (ob(G) b2)) b2
(arrow(F) (ob(G) b1) (ob(G) b2) (arrow(G) b1 b2 g))
eps[b2]))) and
counit-unit-equations(A;B;F;G;\mlambda{}b.eps[b];\mlambda{}a.eta[a]))
By
Latex:
(((Intros THEN MemTypeCD THEN Try ((RepUR ``mk-adjunction mk-nat-trans`` 0 THEN Trivial)))
THENW (D -1 THEN D -2 THEN D -1 THEN All (RepUR ``functor-comp id\_functor``) THEN Auto)
)
THEN RepUR ``mk-adjunction`` 0
THEN RepeatFor 2 (MemCD)
THEN All (RepUR ``functor-comp id\_functor``)
THEN Auto)
Home
Index