Step * 3 of Lemma product-cat_wf

.....wf..... 
1. SmallCategory
2. SmallCategory
3. cat ob:Type
× arrow:ob ⟶ ob ⟶ Type
× x:ob ⟶ (arrow x)
× (x:ob ⟶ y:ob ⟶ z:ob ⟶ (arrow y) ⟶ (arrow z) ⟶ (arrow z))
⊢ let ob,arrow,id,comp cat 
  in (∀x,y:ob. ∀f:arrow y.  (((comp (id x) f) f ∈ (arrow y)) ∧ ((comp (id y)) f ∈ (arrow y))))
     ∧ (∀x,y,z,w:ob. ∀f:arrow y. ∀g:arrow z. ∀h:arrow w.
          ((comp (comp g) h) (comp (comp h)) ∈ (arrow w)))   ∈ 𝕌'
BY
Auto }


Latex:


Latex:
.....wf..... 
1.  A  :  SmallCategory
2.  B  :  SmallCategory
3.  cat  :  ob:Type
\mtimes{}  arrow:ob  {}\mrightarrow{}  ob  {}\mrightarrow{}  Type
\mtimes{}  x:ob  {}\mrightarrow{}  (arrow  x  x)
\mtimes{}  (x:ob  {}\mrightarrow{}  y:ob  {}\mrightarrow{}  z:ob  {}\mrightarrow{}  (arrow  x  y)  {}\mrightarrow{}  (arrow  y  z)  {}\mrightarrow{}  (arrow  x  z))
\mvdash{}  let  ob,arrow,id,comp  =  cat 
    in  (\mforall{}x,y:ob.  \mforall{}f:arrow  x  y.    (((comp  x  x  y  (id  x)  f)  =  f)  \mwedge{}  ((comp  x  y  y  f  (id  y))  =  f)))
          \mwedge{}  (\mforall{}x,y,z,w:ob.  \mforall{}f:arrow  x  y.  \mforall{}g:arrow  y  z.  \mforall{}h:arrow  z  w.
                    ((comp  x  z  w  (comp  x  y  z  f  g)  h)  =  (comp  x  y  w  f  (comp  y  z  w  g  h))))      \mmember{}  \mBbbU{}'


By


Latex:
Auto




Home Index