Step
*
3
of Lemma
yoneda-embedding_wf
1. C : SmallCategory
2. X : cat-ob(C)
3. Y : cat-ob(C)
4. z : cat-ob(C)
5. f : cat-arrow(C) X Y
6. g : cat-arrow(C) Y z
⊢ A |→ λg@0.(cat-comp(C) A X z g@0 (cat-comp(C) X Y z f g))
= A |→ λg.(cat-comp(C) A X Y g f) o A |→ λg@0.(cat-comp(C) A Y z g@0 g)
∈ nat-trans(op-cat(C);TypeCat;rep-pre-sheaf(C;X);rep-pre-sheaf(C;z))
BY
{ (RepUR ``functor-cat trans-comp`` 0 THEN EqCDA) }
1
.....subterm..... T:t
1:n
1. C : SmallCategory
2. X : cat-ob(C)
3. Y : cat-ob(C)
4. z : cat-ob(C)
5. f : cat-arrow(C) X Y
6. g : cat-arrow(C) Y z
7. A : cat-ob(op-cat(C))
⊢ (λg@0.(cat-comp(C) A X z g@0 (cat-comp(C) X Y z f g)))
= (cat-comp(TypeCat) (ob(rep-pre-sheaf(C;X)) A) (ob(rep-pre-sheaf(C;Y)) A) (ob(rep-pre-sheaf(C;z)) A)
(λg.(cat-comp(C) A X Y g f))
(λg@0.(cat-comp(C) A Y z g@0 g)))
∈ (cat-arrow(TypeCat) (ob(rep-pre-sheaf(C;X)) A) (ob(rep-pre-sheaf(C;z)) A))
2
.....antecedent.....
1. C : SmallCategory
2. X : cat-ob(C)
3. Y : cat-ob(C)
4. z : cat-ob(C)
5. f : cat-arrow(C) X Y
6. g : cat-arrow(C) Y z
⊢ ∀A,B:cat-ob(op-cat(C)). ∀g1:cat-arrow(op-cat(C)) A B.
((cat-comp(TypeCat) (ob(rep-pre-sheaf(C;X)) A) (ob(rep-pre-sheaf(C;z)) A) (ob(rep-pre-sheaf(C;z)) B)
(λg@0.(cat-comp(C) A X z g@0 (cat-comp(C) X Y z f g)))
(arrow(rep-pre-sheaf(C;z)) A B g1))
= (cat-comp(TypeCat) (ob(rep-pre-sheaf(C;X)) A) (ob(rep-pre-sheaf(C;X)) B) (ob(rep-pre-sheaf(C;z)) B)
(arrow(rep-pre-sheaf(C;X)) A B g1)
(λg@0.(cat-comp(C) B X z g@0 (cat-comp(C) X Y z f g))))
∈ (cat-arrow(TypeCat) (ob(rep-pre-sheaf(C;X)) A) (ob(rep-pre-sheaf(C;z)) B)))
Latex:
Latex:
1. C : SmallCategory
2. X : cat-ob(C)
3. Y : cat-ob(C)
4. z : cat-ob(C)
5. f : cat-arrow(C) X Y
6. g : cat-arrow(C) Y z
\mvdash{} A |\mrightarrow{} \mlambda{}g@0.(cat-comp(C) A X z g@0 (cat-comp(C) X Y z f g))
= A |\mrightarrow{} \mlambda{}g.(cat-comp(C) A X Y g f) o A |\mrightarrow{} \mlambda{}g@0.(cat-comp(C) A Y z g@0 g)
By
Latex:
(RepUR ``functor-cat trans-comp`` 0 THEN EqCDA)
Home
Index