Nuprl Lemma : Sierpinski-bottom_wf
⊥ ∈ ℕ ⟶ 𝔹
Proof
Definitions occuring in Statement : 
Sierpinski-bottom: ⊥
, 
nat: ℕ
, 
bool: 𝔹
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
Sierpinski-bottom: ⊥
, 
member: t ∈ T
Lemmas referenced : 
bfalse_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaEquality, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mbot{}  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2019_10_31-AM-06_35_15
Last ObjectModification:
2015_12_28-AM-11_21_43
Theory : synthetic!topology
Home
Index