Nuprl Lemma : Sierpinski-bottom_wf

⊥ ∈ ℕ ⟶ 𝔹


Proof




Definitions occuring in Statement :  Sierpinski-bottom: nat: bool: 𝔹 member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  Sierpinski-bottom: member: t ∈ T
Lemmas referenced :  bfalse_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaEquality cut lemma_by_obid hypothesis

Latex:
\mbot{}  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2019_10_31-AM-06_35_15
Last ObjectModification: 2015_12_28-AM-11_21_43

Theory : synthetic!topology


Home Index