Step
*
of Lemma
nat-strong-overt-implies-Markov
sOvert(ℕ)
⇒ (∀g:ℕ ⟶ 𝔹. ((¬(∀n:ℕ. g n = ff))
⇒ (∃n:ℕ. g n = tt)))
BY
{ (Auto THEN (With ⌜Unit⌝ (D 1)⋅ THENA Auto) THEN ExRepD THEN All (RepUR ``Open in-open``)) }
1
1. g : ℕ ⟶ 𝔹@i
2. ¬(∀n:ℕ. g n = ff)
3. f : ((ℕ × Unit) ⟶ Sierpinski) ⟶ Unit ⟶ Sierpinski@i'
4. ∀A:(ℕ × Unit) ⟶ Sierpinski. ∀y:Unit. ((f A y) = ⊤ ∈ Sierpinski
⇐⇒ ∃x:ℕ. ((A <x, y>) = ⊤ ∈ Sierpinski))
⊢ ∃n:ℕ. g n = tt
Latex:
Latex:
sOvert(\mBbbN{}) {}\mRightarrow{} (\mforall{}g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((\mneg{}(\mforall{}n:\mBbbN{}. g n = ff)) {}\mRightarrow{} (\mexists{}n:\mBbbN{}. g n = tt)))
By
Latex:
(Auto THEN (With \mkleeneopen{}Unit\mkleeneclose{} (D 1)\mcdot{} THENA Auto) THEN ExRepD THEN All (RepUR ``Open in-open``))
Home
Index