Step
*
of Lemma
not-Sierpinski-top
∀[x:Sierpinski]. ((¬(x = ⊤ ∈ Sierpinski))
⇒ (x = ⊥ ∈ Sierpinski))
BY
{ TACTIC:(InstLemma `Sierpinski-unequal-1` []
THEN Auto
THEN Thin 2
THEN D 2
THEN ThinVar `x1'
THEN EqTypeCD
THEN Auto
THEN Ext
THEN Auto
THEN RenameVar `n' (-1)
THEN RepUR ``Sierpinski-bottom`` 0
THEN AutoBoolCase ⌜x n⌝⋅
THEN D -4
THEN EqTypeCD
THEN Auto) }
1
1. (⊥ = ⊤ ∈ (ℕ ⟶ 𝔹))
⇒ False
2. x : Base
3. x ∈ ℕ ⟶ 𝔹
4. ⊥ = ⊥ ∈ (ℕ ⟶ 𝔹)
5. n : ℕ
6. ↑(x n)
7. x = ⊥ ∈ (ℕ ⟶ 𝔹)
⊢ ⊤ = ⊥ ∈ (ℕ ⟶ 𝔹)
Latex:
Latex:
\mforall{}[x:Sierpinski]. ((\mneg{}(x = \mtop{})) {}\mRightarrow{} (x = \mbot{}))
By
Latex:
TACTIC:(InstLemma `Sierpinski-unequal-1` []
THEN Auto
THEN Thin 2
THEN D 2
THEN ThinVar `x1'
THEN EqTypeCD
THEN Auto
THEN Ext
THEN Auto
THEN RenameVar `n' (-1)
THEN RepUR ``Sierpinski-bottom`` 0
THEN AutoBoolCase \mkleeneopen{}x n\mkleeneclose{}\mcdot{}
THEN D -4
THEN EqTypeCD
THEN Auto)
Home
Index