Nuprl Lemma : add_mono_wrt_le_rw
∀[a,b,n:ℤ].  {uiff(a ≤ b;(a + n) ≤ (b + n))}
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
le: A ≤ B
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
guard: {T}
Lemmas referenced : 
add_mono_wrt_le
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lemma_by_obid
Latex:
\mforall{}[a,b,n:\mBbbZ{}].    \{uiff(a  \mleq{}  b;(a  +  n)  \mleq{}  (b  +  n))\}
Date html generated:
2016_05_13-PM-03_40_07
Last ObjectModification:
2015_12_26-AM-09_40_30
Theory : arithmetic
Home
Index