Step
*
of Lemma
gcd_wf
∀a,b:ℤ. (gcd(a;b) ∈ ℤ)
BY
{ (Assert ∀k:ℕ. ∀a,b:ℤ. (|b| < k
⇒ (gcd(a;b) ∈ ℤ)) BY
(InductionOnNat
THEN (Auto THEN (Assert 0 ≤ |b| BY Auto) THEN Auto)
THEN RecUnfold `gcd` 0
THEN AutoSplit
THEN BackThruSomeHyp
THEN InstLemma `rem_bounds_z` [⌜a⌝;⌜b⌝]⋅
THEN Auto)) }
1
1. ∀k:ℕ. ∀a,b:ℤ. (|b| < k
⇒ (gcd(a;b) ∈ ℤ))
⊢ ∀a,b:ℤ. (gcd(a;b) ∈ ℤ)
Latex:
Latex:
\mforall{}a,b:\mBbbZ{}. (gcd(a;b) \mmember{} \mBbbZ{})
By
Latex:
(Assert \mforall{}k:\mBbbN{}. \mforall{}a,b:\mBbbZ{}. (|b| < k {}\mRightarrow{} (gcd(a;b) \mmember{} \mBbbZ{})) BY
(InductionOnNat
THEN (Auto THEN (Assert 0 \mleq{} |b| BY Auto) THEN Auto)
THEN RecUnfold `gcd` 0
THEN AutoSplit
THEN BackThruSomeHyp
THEN InstLemma `rem\_bounds\_z` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THEN Auto))
Home
Index