Step
*
1
of Lemma
free-from-atom-outr
1. A : Type
2. x : A
3. a : Atom1
4. a#inr x :Top + A
5. ¬False
⊢ a#x:A
BY
{ ((Subst' x ~ (λx.case x of inl(a) => 0 | inr(a) => a) (inr x ) 0 THEN Try ((Reduce 0 THEN Complete (Auto))))⋅
THEN ((Assert inr x ∈ Top + A BY
Auto)
THEN Subst' A ~ case inr x of inl(a) => ℤ | inr(a) => A 0
THEN Try ((Reduce 0 THEN Complete (Auto))))
THEN (FreeFromAtomApElim ⌜inr x ⌝⋅ THEN FreeFromAtomTriviality THEN Auto)
THEN D -1
THEN Reduce 0
THEN Auto)⋅ }
Latex:
Latex:
1. A : Type
2. x : A
3. a : Atom1
4. a\#inr x :Top + A
5. \mneg{}False
\mvdash{} a\#x:A
By
Latex:
((Subst' x \msim{} (\mlambda{}x.case x of inl(a) => 0 | inr(a) => a) (inr x ) 0
THEN Try ((Reduce 0 THEN Complete (Auto)))
)\mcdot{}
THEN ((Assert inr x \mmember{} Top + A BY
Auto)
THEN Subst' A \msim{} case inr x of inl(a) => \mBbbZ{} | inr(a) => A 0
THEN Try ((Reduce 0 THEN Complete (Auto))))
THEN (FreeFromAtomApElim \mkleeneopen{}inr x \mkleeneclose{}\mcdot{} THEN FreeFromAtomTriviality THEN Auto)
THEN D -1
THEN Reduce 0
THEN Auto)\mcdot{}
Home
Index