Step
*
1
of Lemma
weakly-infinite-cases
1. S : ℕ ⟶ ℙ
2. w∃∞x.S[x]
3. A : ℕ ⟶ ℙ
4. ∀n:ℕ. (A[n]
⇒ S[n])
5. ¬w∃∞n.A[n]
6. n : ℕ
7. ∀q:ℕ. (¬(n < q ∧ A[q]))
⊢ ¬¬(w∃∞n.A[n] ∨ w∃∞n.S[n] ∧ (¬A[n]))
BY
{ (Assert ⌜w∃∞n.S[n] ∧ (¬A[n])⌝⋅ THEN Auto THEN (D 0 THENA Auto)) }
1
1. S : ℕ ⟶ ℙ
2. w∃∞x.S[x]
3. A : ℕ ⟶ ℙ
4. ∀n:ℕ. (A[n]
⇒ S[n])
5. ¬w∃∞n.A[n]
6. n : ℕ
7. ∀q:ℕ. (¬(n < q ∧ A[q]))
8. n1 : ℕ
⊢ ¬¬(∃q:ℕ. (n1 < q ∧ S[q] ∧ (¬A[q])))
Latex:
Latex:
1. S : \mBbbN{} {}\mrightarrow{} \mBbbP{}
2. w\mexists{}\minfty{}x.S[x]
3. A : \mBbbN{} {}\mrightarrow{} \mBbbP{}
4. \mforall{}n:\mBbbN{}. (A[n] {}\mRightarrow{} S[n])
5. \mneg{}w\mexists{}\minfty{}n.A[n]
6. n : \mBbbN{}
7. \mforall{}q:\mBbbN{}. (\mneg{}(n < q \mwedge{} A[q]))
\mvdash{} \mneg{}\mneg{}(w\mexists{}\minfty{}n.A[n] \mvee{} w\mexists{}\minfty{}n.S[n] \mwedge{} (\mneg{}A[n]))
By
Latex:
(Assert \mkleeneopen{}w\mexists{}\minfty{}n.S[n] \mwedge{} (\mneg{}A[n])\mkleeneclose{}\mcdot{} THEN Auto THEN (D 0 THENA Auto))
Home
Index