Nuprl Lemma : bnot-inr
∀[a:Top]. (¬b(inr a ) ~ tt)
Proof
Definitions occuring in Statement :
bnot: ¬bb
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
top: Top
,
inr: inr x
,
sqequal: s ~ t
Definitions unfolded in proof :
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
lemma_by_obid,
hypothesis
Latex:
\mforall{}[a:Top]. (\mneg{}\msubb{}(inr a ) \msim{} tt)
Date html generated:
2016_05_13-PM-03_59_35
Last ObjectModification:
2015_12_26-AM-10_50_09
Theory : bool_1
Home
Index