Nuprl Lemma : bnot-inr

[a:Top]. b(inr tt)


Proof




Definitions occuring in Statement :  bnot: ¬bb btrue: tt uall: [x:A]. B[x] top: Top inr: inr  sqequal: t
Definitions unfolded in proof :  bnot: ¬bb ifthenelse: if then else fi  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis

Latex:
\mforall{}[a:Top].  (\mneg{}\msubb{}(inr  a  )  \msim{}  tt)



Date html generated: 2016_05_13-PM-03_59_35
Last ObjectModification: 2015_12_26-AM-10_50_09

Theory : bool_1


Home Index