Nuprl Lemma : bnot-inr
∀[a:Top]. (¬b(inr a ) ~ tt)
Proof
Definitions occuring in Statement : 
bnot: ¬bb
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[a:Top].  (\mneg{}\msubb{}(inr  a  )  \msim{}  tt)
Date html generated:
2016_05_13-PM-03_59_35
Last ObjectModification:
2015_12_26-AM-10_50_09
Theory : bool_1
Home
Index