Nuprl Definition : altW

We defined the W-type as special case of the parameterized family
of W-types, so the proof of the induction principle is somewhat
complicated.  Here we give an alternate definition as the
subtype of w ∈ coW(A;a.B[a]) for which ⌜coW-wfdd(a.B[a];w)⌝.

Then the induction operator is 
 altWind(h;w) ==  b.altWind(h;coW-item(w;b)))
and we directly prove that altWind(h;w) witnesses the induction
principle for altW(A;a.B[a])  by using bar induction
(see altWind_wf)⋅

altW(A;a.B[a]) ==  {w:coW(A;a.B[a])| coW-wfdd(a.B[a];w)} 



Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) set: {x:A| B[x]} 
Definitions occuring in definition :  set: {x:A| B[x]}  coW: coW(A;a.B[a]) coW-wfdd: coW-wfdd(a.B[a];w)
FDL editor aliases :  altW

Latex:
altW(A;a.B[a])  ==    \{w:coW(A;a.B[a])|  coW-wfdd(a.B[a];w)\} 



Date html generated: 2019_06_20-PM-01_12_11
Last ObjectModification: 2019_01_02-PM-01_35_41

Theory : co-recursion-2


Home Index