Nuprl Definition : altW
We defined the W-type as a special case of the parameterized family
of W-types, so the proof of the induction principle is somewhat
complicated.  Here we give an alternate definition as the
subtype of w ∈ coW(A;a.B[a]) for which ⌜coW-wfdd(a.B[a];w)⌝.
Then the induction operator is 
 altWind(h;w) ==  h w (λb.altWind(h;coW-item(w;b)))
and we directly prove that altWind(h;w) witnesses the induction
principle for altW(A;a.B[a])  by using bar induction
(see altWind_wf)⋅
altW(A;a.B[a]) ==  {w:coW(A;a.B[a])| coW-wfdd(a.B[a];w)} 
Definitions occuring in Statement : 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
set: {x:A| B[x]} 
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
coW: coW(A;a.B[a])
, 
coW-wfdd: coW-wfdd(a.B[a];w)
FDL editor aliases : 
altW
Latex:
altW(A;a.B[a])  ==    \{w:coW(A;a.B[a])|  coW-wfdd(a.B[a];w)\} 
Date html generated:
2019_06_20-PM-01_12_11
Last ObjectModification:
2019_01_02-PM-01_35_41
Theory : co-recursion-2
Home
Index