Nuprl Lemma : altWind_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[P:altW(A;a.B[a]) ⟶ ℙ]. ∀[h:∀w:altW(A;a.B[a])
                                                         ((∀b:coW-dom(a.B[a];w). P[altW-item(w;b)])  P[w])].
[w:altW(A;a.B[a])].
  (altWind(h;w) ∈ P[w])


Proof




Definitions occuring in Statement :  altWind: altWind(h;w) altW-item: altW-item(w;b) altW: altW(A;a.B[a]) coW-dom: coW-dom(a.B[a];w) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  altW-item: altW-item(w;b) coPath: coPath(a.B[a];w;n) copath: copath(a.B[a];w) altWind: altWind(h;w) coPath-at: coPath-at(n;w;p) copath-at: copath-at(w;p) band: p ∧b q copath-nil: () pi1: fst(t) copath-length: copath-length(p) less_than: a < b bdd-all: bdd-all(n;i.P[i]) int_upper: {i...} ge: i ≥  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff it: unit: Unit bool: 𝔹 exists: x:A. B[x] sq_stable: SqStable(P) squash: T coW-wfdd: coW-wfdd(a.B[a];w) btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) guard: {T} true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: altW: altW(A;a.B[a]) implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  add_functionality_wrt_eq length-copath-extend set_subtype_base copath-at-extend bool_cases iff_weakening_equal subtype_rel_self or_wf le-add-cancel2 not-equal-2 eq_int_eq_false true_wf squash_wf copath-extend_wf copathAgree-extend coW-item_wf equal-wf-base not-ge-2 top_wf coPath_wf ge_wf int_upper_wf copath-at_wf copath-nil_wf primrec1_lemma int_subtype_base nequal-le-implies nat_properties upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity eqtt_to_assert uiff_transitivity it_wf assert_of_eq_int assert-bdd-all bdd-all_wf bnot_wf less_than_irreflexivity le_weakening less_than_transitivity1 assert_wf equal-wf-T-base bool_wf eq_int_wf le_wf sq_stable__le add-subtract-cancel bdd_all_zero_lemma exists_wf decidable__int_equal decidable__not not_wf decidable__exists_int_seg copathAgree_wf lelt_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add nat_wf minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 false_wf decidable__le subtract_wf int_seg_wf copath-length_wf equal_wf less_than_wf copath_wf altW-item_wf coW-dom_wf all_wf altW_wf
Rules used in proof :  int_eqReduceFalseSq int_eqReduceTrueSq int_eqEquality orFunctionality addLevel productEquality closedConclusion baseApply intWeakElimination hypothesis_subsumption impliesFunctionality equalityElimination promote_hyp allFunctionality multiplyEquality dependent_pairFormation baseClosed imageMemberEquality imageElimination inrFormation inlFormation minusEquality voidEquality addEquality independent_isectElimination independent_functionElimination productElimination voidElimination lambdaFormation unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality functionExtensionality intEquality natural_numberEquality strong_bar_Induction universeEquality rename setElimination functionEquality cumulativity instantiate because_Cache isect_memberEquality applyEquality lambdaEquality hypothesisEquality thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:altW(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[h:\mforall{}w:altW(A;a.B[a])
                                                                                                                  ((\mforall{}b:coW-dom(a.B[a];w).  P[altW-item(w;b)])
                                                                                                                  {}\mRightarrow{}  P[w])].  \mforall{}[w:altW(A;a.B[a])].
    (altWind(h;w)  \mmember{}  P[w])



Date html generated: 2018_07_29-AM-09_22_26
Last ObjectModification: 2018_07_26-PM-09_33_46

Theory : co-recursion


Home Index