Nuprl Lemma : coW-dom_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (coW-dom(a.B[a];w) ∈ Type)


Proof




Definitions occuring in Statement :  coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coW-dom: coW-dom(a.B[a];w) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q prop: ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  coW-ext subtype_rel_weakening coW_wf pi1_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis_subsumption thin instantiate extract_by_obid sqequalHypSubstitution isectElimination lambdaEquality because_Cache hypothesis productEquality functionEquality independent_isectElimination productElimination independent_pairEquality lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (coW-dom(a.B[a];w)  \mmember{}  Type)



Date html generated: 2018_07_25-PM-01_37_28
Last ObjectModification: 2018_06_01-AM-09_47_44

Theory : co-recursion


Home Index