Nuprl Lemma : coW-dom_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. (coW-dom(a.B[a];w) ∈ Type)
Proof
Definitions occuring in Statement :
coW-dom: coW-dom(a.B[a];w)
,
coW: coW(A;a.B[a])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
coW-dom: coW-dom(a.B[a];w)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
guard: {T}
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
ext-eq: A ≡ B
,
and: P ∧ Q
Lemmas referenced :
coW-ext,
subtype_rel_weakening,
coW_wf,
pi1_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
applyEquality,
functionExtensionality,
hypothesisEquality,
cumulativity,
hypothesis_subsumption,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
lambdaEquality,
because_Cache,
hypothesis,
productEquality,
functionEquality,
independent_isectElimination,
productElimination,
independent_pairEquality,
lambdaFormation,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
axiomEquality,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[A:\mBbbU{}']. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[w:coW(A;a.B[a])]. (coW-dom(a.B[a];w) \mmember{} Type)
Date html generated:
2018_07_25-PM-01_37_28
Last ObjectModification:
2018_06_01-AM-09_47_44
Theory : co-recursion
Home
Index