Nuprl Lemma : bdd-all_wf
∀[n:ℕ]. ∀[P:ℕn ⟶ 𝔹]. (bdd-all(n;i.P[i]) ∈ 𝔹)
Proof
Definitions occuring in Statement :
bdd-all: bdd-all(n;i.P[i])
,
int_seg: {i..j-}
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bdd-all: bdd-all(n;i.P[i])
,
so_apply: x[s]
,
nat: ℕ
Lemmas referenced :
primrec_wf,
bool_wf,
btrue_wf,
band_wf,
int_seg_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
lambdaEquality,
applyEquality,
natural_numberEquality,
setElimination,
rename,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[P:\mBbbN{}n {}\mrightarrow{} \mBbbB{}]. (bdd-all(n;i.P[i]) \mmember{} \mBbbB{})
Date html generated:
2016_05_13-PM-04_00_49
Last ObjectModification:
2015_12_26-AM-10_49_33
Theory : bool_1
Home
Index