Nuprl Lemma : bdd-all_wf

[n:ℕ]. ∀[P:ℕn ⟶ 𝔹].  (bdd-all(n;i.P[i]) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bdd-all: bdd-all(n;i.P[i]) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bdd-all: bdd-all(n;i.P[i]) so_apply: x[s] nat:
Lemmas referenced :  primrec_wf bool_wf btrue_wf band_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    (bdd-all(n;i.P[i])  \mmember{}  \mBbbB{})



Date html generated: 2016_05_13-PM-04_00_49
Last ObjectModification: 2015_12_26-AM-10_49_33

Theory : bool_1


Home Index