Nuprl Lemma : bdd-all_wf
∀[n:ℕ]. ∀[P:ℕn ⟶ 𝔹].  (bdd-all(n;i.P[i]) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bdd-all: bdd-all(n;i.P[i])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bdd-all: bdd-all(n;i.P[i])
, 
so_apply: x[s]
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
bool_wf, 
btrue_wf, 
band_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].    (bdd-all(n;i.P[i])  \mmember{}  \mBbbB{})
Date html generated:
2016_05_13-PM-04_00_49
Last ObjectModification:
2015_12_26-AM-10_49_33
Theory : bool_1
Home
Index