Nuprl Lemma : copath-nil_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (() ∈ copath(a.B[a];w))
Proof
Definitions occuring in Statement : 
copath-nil: (), 
copath: copath(a.B[a];w), 
coW: coW(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
top: Top, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
eq_int: (i =z j), 
coPath: coPath(a.B[a];w;n), 
unit: Unit, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
copath: copath(a.B[a];w), 
copath-nil: (), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
coPath_wf, 
equal-wf-base, 
it_wf, 
le_wf, 
false_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
baseClosed, 
intEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (()  \mmember{}  copath(a.B[a];w))
Date html generated:
2018_07_25-PM-01_39_29
Last ObjectModification:
2018_06_26-AM-00_25_50
Theory : co-recursion
Home
Index