Nuprl Lemma : coPath_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])].  (coPath(a.B[a];w;n) ∈ Type)


Proof




Definitions occuring in Statement :  coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) not: ¬A nequal: a ≠ b ∈  subtract: m assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] eq_int: (i =z j) coPath: coPath(a.B[a];w;n) so_apply: x[s] so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf coW-item_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le coW-dom_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eq_int_wf eqff_to_assert top_wf assert_of_eq_int eqtt_to_assert bool_wf btrue_wf coW_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  universeEquality functionEquality minusEquality intEquality voidEquality addEquality independent_pairFormation functionExtensionality productEquality promote_hyp dependent_pairFormation because_Cache productElimination equalityElimination unionElimination applyEquality cumulativity instantiate equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].    (coPath(a.B[a];w;n)  \mmember{}  Type)



Date html generated: 2018_07_25-PM-01_37_48
Last ObjectModification: 2018_07_10-PM-05_44_48

Theory : co-recursion


Home Index