Nuprl Lemma : coW-item_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[b:coW-dom(a.B[a];w)].  (coW-item(w;b) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coW-item: coW-item(w;b) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q prop: coW-dom: coW-dom(a.B[a];w) pi1: fst(t) ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  coW-ext subtype_rel_weakening coW_wf pi2_wf equal_wf coW-dom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis_subsumption thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality cumulativity applyEquality because_Cache hypothesis productEquality functionEquality independent_isectElimination productElimination independent_pairEquality lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[b:coW-dom(a.B[a];w)].
    (coW-item(w;b)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2018_07_25-PM-01_37_34
Last ObjectModification: 2018_06_01-AM-09_50_00

Theory : co-recursion


Home Index