Nuprl Lemma : coW-item_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[b:coW-dom(a.B[a];w)].  (coW-item(w;b) ∈ coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
coW-item: coW-item(w;b)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coW-item: coW-item(w;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
coW-dom: coW-dom(a.B[a];w)
, 
pi1: fst(t)
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
coW-ext, 
subtype_rel_weakening, 
coW_wf, 
pi2_wf, 
equal_wf, 
coW-dom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis_subsumption, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
cumulativity, 
applyEquality, 
because_Cache, 
hypothesis, 
productEquality, 
functionEquality, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[b:coW-dom(a.B[a];w)].
    (coW-item(w;b)  \mmember{}  coW(A;a.B[a]))
Date html generated:
2018_07_25-PM-01_37_34
Last ObjectModification:
2018_06_01-AM-09_50_00
Theory : co-recursion
Home
Index