Nuprl Lemma : copathAgree-extend

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀p:copath(a.B[a];w). ∀b:coW-dom(a.B[a];copath-at(w;p)).  copathAgree(a.B[a];w;p;copath-extend(p;b))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-extend: copath-extend(q;t) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  cand: c∧ B assert: b bnot: ¬bb exists: x:A. B[x] it: unit: Unit bool: 𝔹 bfalse: ff sq_type: SQType(T) coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) btrue: tt ifthenelse: if then else fi  coPath-extend: coPath-extend(n;p;t) eq_int: (i =z j) coPathAgree: coPathAgree(a.B[a];n;w;p;q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) guard: {T} true: True le: A ≤ B subtype_rel: A ⊆B subtract: m uimplies: supposing a uiff: uiff(P;Q) prop: and: P ∧ Q false: False squash: T not: ¬A less_than: a < b less_than': less_than'(a;b) copath-at: copath-at(w;p) top: Top nat: copathAgree: copathAgree(a.B[a];w;x;y) copath-extend: copath-extend(q;t) copath: copath(a.B[a];w) implies:  Q sq_stable: SqStable(P) so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW-item_wf neg_assert_of_eq_int assert-bnot bool_cases_sqequal equal_wf assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_subtype_base not_wf bnot_wf assert_wf less_than_irreflexivity le_weakening less_than_transitivity1 eq_int_wf sq_stable__le primrec-wf2 less_than_wf set_wf le-add-cancel2 coPath_subtype coPath-extend_wf coPathAgree_wf add_functionality_wrt_le minus-minus zero-add less-iff-le not-le-2 decidable__le subtract_wf all_wf le_weakening2 coPath_wf le_wf coPath-at_wf coW_wf copath_wf copath-at_wf coW-dom_wf le-add-cancel add-commutes add-associates add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul nat_wf minus-add condition-implies-le not-lt-2 equal-wf-base member_wf false_wf squash_wf top_wf copath-extend_wf sq_stable__copathAgree
Rules used in proof :  promote_hyp dependent_pairFormation equalityElimination impliesFunctionality equalitySymmetry equalityTransitivity unionElimination independent_pairFormation dependent_set_memberEquality functionExtensionality universeEquality functionEquality cumulativity instantiate baseClosed imageMemberEquality multiplyEquality minusEquality independent_isectElimination intEquality productEquality imageElimination voidEquality voidElimination isect_memberEquality sqequalAxiom natural_numberEquality because_Cache addEquality rename setElimination lessCases productElimination independent_functionElimination hypothesis dependent_functionElimination applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}p:copath(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];copath-at(w;p)).
        copathAgree(a.B[a];w;p;copath-extend(p;b))



Date html generated: 2018_07_25-PM-01_41_29
Last ObjectModification: 2018_07_24-PM-05_49_18

Theory : co-recursion


Home Index