Nuprl Lemma : copathAgree-extend
ā[A:š']. ā[B:A ā¶ Type]. ā[w:coW(A;a.B[a])].
āp:copath(a.B[a];w). āb:coW-dom(a.B[a];copath-at(w;p)). copathAgree(a.B[a];w;p;copath-extend(p;b))
Proof
Definitions occuring in Statement :
copathAgree: copathAgree(a.B[a];w;x;y)
,
copath-extend: copath-extend(q;t)
,
copath-at: copath-at(w;p)
,
copath: copath(a.B[a];w)
,
coW-dom: coW-dom(a.B[a];w)
,
coW: coW(A;a.B[a])
,
uall: ā[x:A]. B[x]
,
so_apply: x[s]
,
all: āx:A. B[x]
,
function: x:A ā¶ B[x]
,
universe: Type
Definitions unfolded in proof :
cand: A cā§ B
,
assert: āb
,
bnot: Ā¬bb
,
exists: āx:A. B[x]
,
it: ā
,
unit: Unit
,
bool: š¹
,
bfalse: ff
,
sq_type: SQType(T)
,
coPath-at: coPath-at(n;w;p)
,
coPath: coPath(a.B[a];w;n)
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
coPath-extend: coPath-extend(n;p;t)
,
eq_int: (i =z j)
,
coPathAgree: coPathAgree(a.B[a];n;w;p;q)
,
rev_implies: P
ā Q
,
iff: P
āā Q
,
or: P āØ Q
,
decidable: Dec(P)
,
guard: {T}
,
true: True
,
le: A ā¤ B
,
subtype_rel: A ār B
,
subtract: n - m
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
prop: ā
,
and: P ā§ Q
,
false: False
,
squash: āT
,
not: Ā¬A
,
less_than: a < b
,
less_than': less_than'(a;b)
,
copath-at: copath-at(w;p)
,
top: Top
,
nat: ā
,
copathAgree: copathAgree(a.B[a];w;x;y)
,
copath-extend: copath-extend(q;t)
,
copath: copath(a.B[a];w)
,
implies: P
ā Q
,
sq_stable: SqStable(P)
,
so_apply: x[s]
,
so_lambda: Ī»2x.t[x]
,
member: t ā T
,
all: āx:A. B[x]
,
uall: ā[x:A]. B[x]
Lemmas referenced :
coW-item_wf,
neg_assert_of_eq_int,
assert-bnot,
bool_cases_sqequal,
equal_wf,
assert_of_bnot,
iff_weakening_uiff,
iff_transitivity,
eqff_to_assert,
assert_of_eq_int,
eqtt_to_assert,
bool_subtype_base,
bool_wf,
subtype_base_sq,
bool_cases,
int_subtype_base,
not_wf,
bnot_wf,
assert_wf,
less_than_irreflexivity,
le_weakening,
less_than_transitivity1,
eq_int_wf,
sq_stable__le,
primrec-wf2,
less_than_wf,
set_wf,
le-add-cancel2,
coPath_subtype,
coPath-extend_wf,
coPathAgree_wf,
add_functionality_wrt_le,
minus-minus,
zero-add,
less-iff-le,
not-le-2,
decidable__le,
subtract_wf,
all_wf,
le_weakening2,
coPath_wf,
le_wf,
coPath-at_wf,
coW_wf,
copath_wf,
copath-at_wf,
coW-dom_wf,
le-add-cancel,
add-commutes,
add-associates,
add-zero,
zero-mul,
add-mul-special,
minus-one-mul-top,
add-swap,
minus-one-mul,
nat_wf,
minus-add,
condition-implies-le,
not-lt-2,
equal-wf-base,
member_wf,
false_wf,
squash_wf,
top_wf,
copath-extend_wf,
sq_stable__copathAgree
Rules used in proof :
promote_hyp,
dependent_pairFormation,
equalityElimination,
impliesFunctionality,
equalitySymmetry,
equalityTransitivity,
unionElimination,
independent_pairFormation,
dependent_set_memberEquality,
functionExtensionality,
universeEquality,
functionEquality,
cumulativity,
instantiate,
baseClosed,
imageMemberEquality,
multiplyEquality,
minusEquality,
independent_isectElimination,
intEquality,
productEquality,
imageElimination,
voidEquality,
voidElimination,
isect_memberEquality,
sqequalAxiom,
natural_numberEquality,
because_Cache,
addEquality,
rename,
setElimination,
lessCases,
productElimination,
independent_functionElimination,
hypothesis,
dependent_functionElimination,
applyEquality,
lambdaEquality,
sqequalRule,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[w:coW(A;a.B[a])].
\mforall{}p:copath(a.B[a];w). \mforall{}b:coW-dom(a.B[a];copath-at(w;p)).
copathAgree(a.B[a];w;p;copath-extend(p;b))
Date html generated:
2018_07_25-PM-01_41_29
Last ObjectModification:
2018_07_24-PM-05_49_18
Theory : co-recursion
Home
Index