Nuprl Lemma : sq_stable__copathAgree

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀x,y:copath(a.B[a];w).  SqStable(copathAgree(a.B[a];w;x;y))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) sq_stable: SqStable(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] copath: copath(a.B[a];w) copathAgree: copathAgree(a.B[a];w;x;y) member: t ∈ T nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b gt: i > j
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf sq_stable__coPathAgree coPath_subtype le_weakening2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not-gt-2 copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination lambdaEquality applyEquality dependent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}x,y:copath(a.B[a];w).    SqStable(copathAgree(a.B[a];w;x;y))



Date html generated: 2018_07_25-PM-01_40_56
Last ObjectModification: 2018_06_08-PM-04_18_35

Theory : co-recursion


Home Index