Nuprl Lemma : sq_stable__coPathAgree

[A:𝕌']. ∀[B:A ⟶ Type].  ∀n:ℕ. ∀[w:coW(A;a.B[a])]. ∀p,q:coPath(a.B[a];w;n).  SqStable(coPathAgree(a.B[a];n;w;p;q))


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: sq_stable: SqStable(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtract: m nequal: a ≠ b ∈  not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) coPath: coPath(a.B[a];w;n) subtype_rel: A ⊆B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q top: Top true: True squash: T
Lemmas referenced :  btrue_wf bool_wf eqtt_to_assert assert_of_eq_int sq_stable_from_decidable true_wf decidable__true eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int coPath_wf false_wf le_wf coW_wf less_than_transitivity1 le_weakening less_than_irreflexivity le_weakening2 uall_wf all_wf subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel sq_stable_wf coPathAgree_wf set_wf less_than_wf primrec-wf2 nat_wf int_subtype_base assert_wf bnot_wf not_wf equal-wf-base sq_stable__and coW-dom_wf not-equal-2 coW-item_wf subtype_rel-equal and_wf sq_stable__equal bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule introduction extract_by_obid hypothesis sqequalHypSubstitution unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache independent_functionElimination natural_numberEquality dependent_pairFormation hypothesisEquality promote_hyp dependent_functionElimination instantiate cumulativity voidElimination lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation rename setElimination universeEquality addEquality isect_memberEquality voidEquality intEquality minusEquality functionEquality baseClosed imageElimination applyLambdaEquality imageMemberEquality impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}.  \mforall{}[w:coW(A;a.B[a])].  \mforall{}p,q:coPath(a.B[a];w;n).    SqStable(coPathAgree(a.B[a];n;w;p;q))



Date html generated: 2018_07_25-PM-01_38_14
Last ObjectModification: 2018_06_08-PM-04_16_56

Theory : co-recursion


Home Index