Nuprl Lemma : copath-at_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-at(w;p) ∈ coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
copath-at: copath-at(w;p)
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
copath: copath(a.B[a];w)
, 
copath-at: copath-at(w;p)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
copath_wf, 
coPath-at_wf, 
coPath_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
dependent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
spreadEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    (copath-at(w;p)  \mmember{}  coW(A;a.B[a]))
Date html generated:
2018_07_25-PM-01_38_57
Last ObjectModification:
2018_07_18-PM-05_21_13
Theory : co-recursion
Home
Index