Nuprl Lemma : copath-at_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-at(w;p) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] copath: copath(a.B[a];w) copath-at: copath-at(w;p) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf copath_wf coPath-at_wf coPath_wf
Rules used in proof :  universeEquality functionEquality cumulativity instantiate because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality lambdaEquality isectElimination extract_by_obid hypothesisEquality dependent_pairEquality thin productElimination sqequalHypSubstitution spreadEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    (copath-at(w;p)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2018_07_25-PM-01_38_57
Last ObjectModification: 2018_07_18-PM-05_21_13

Theory : co-recursion


Home Index