Nuprl Lemma : copath-length_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-length(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  copath-length: copath-length(p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-length: copath-length(p) copath: copath(a.B[a];w) pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination lambdaEquality applyEquality isect_memberEquality because_Cache instantiate cumulativity functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].    (copath-length(p)  \mmember{}  \mBbbN{})



Date html generated: 2018_07_25-PM-01_39_22
Last ObjectModification: 2018_06_01-AM-08_46_02

Theory : co-recursion


Home Index