Nuprl Lemma : assert-bdd-all

n:ℕ. ∀P:ℕn ⟶ 𝔹.  (↑bdd-all(n;i.P[i]) ⇐⇒ ∀i:ℕn. (↑P[i]))


Proof




Definitions occuring in Statement :  bdd-all: bdd-all(n;i.P[i]) int_seg: {i..j-} nat: assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: iff: ⇐⇒ Q and: P ∧ Q so_apply: x[s] rev_implies:  Q so_lambda: λ2x.t[x] bdd-all: bdd-all(n;i.P[i]) top: Top assert: b ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} lelt: i ≤ j < k true: True subtype_rel: A ⊆B le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) istype: istype(T) bool: 𝔹 unit: Unit it: band: p ∧b q bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb label: ...$L... t rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf assert_witness bdd-all_wf int_seg_wf primrec0_lemma istype-void true_wf assert_wf bool_wf le_wf subtract-1-ge-0 subtype_rel_dep_function subtract_wf subtype_rel_sets and_wf decidable__lt istype-false not-lt-2 less-iff-le condition-implies-le add-associates istype-int minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 primrec-unroll nat_wf lt_int_wf equal-wf-base int_subtype_base add-zero btrue_wf le_int_wf bnot_wf iff_weakening_uiff decidable__le not-le-2 zero-add minus-minus le-add-cancel add-mul-special zero-mul le-add-cancel-alt eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_of_band uiff_transitivity assert_of_lt_int assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int decidable__int_equal le_antisymmetry_iff not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination productElimination independent_pairEquality applyEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  independent_pairFormation Error :functionIsType,  Error :dependent_set_memberEquality_alt,  because_Cache intEquality Error :setIsType,  Error :productIsType,  unionElimination addEquality minusEquality baseApply closedConclusion baseClosed promote_hyp equalityElimination Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  instantiate productEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}bdd-all(n;i.P[i])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i:\mBbbN{}n.  (\muparrow{}P[i]))



Date html generated: 2019_06_20-AM-11_32_42
Last ObjectModification: 2018_10_06-AM-09_00_33

Theory : bool_1


Home Index