Nuprl Lemma : bdd_all_zero_lemma
∀P:Top. (bdd-all(0;x.P[x]) ~ tt)
Proof
Definitions occuring in Statement : 
bdd-all: bdd-all(n;i.P[i])
, 
btrue: tt
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
bdd-all: bdd-all(n;i.P[i])
, 
top: Top
Lemmas referenced : 
top_wf, 
primrec0_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}P:Top.  (bdd-all(0;x.P[x])  \msim{}  tt)
Date html generated:
2016_05_13-PM-04_01_00
Last ObjectModification:
2015_12_26-AM-10_49_21
Theory : bool_1
Home
Index