Nuprl Lemma : bdd_all_zero_lemma

P:Top. (bdd-all(0;x.P[x]) tt)


Proof




Definitions occuring in Statement :  bdd-all: bdd-all(n;i.P[i]) btrue: tt top: Top so_apply: x[s] all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bdd-all: bdd-all(n;i.P[i]) top: Top
Lemmas referenced :  top_wf primrec0_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}P:Top.  (bdd-all(0;x.P[x])  \msim{}  tt)



Date html generated: 2016_05_13-PM-04_01_00
Last ObjectModification: 2015_12_26-AM-10_49_21

Theory : bool_1


Home Index