Nuprl Lemma : eq_int_eq_false
∀[i,j:ℤ].  (i =z j) = ff supposing i ≠ j
Proof
Definitions occuring in Statement : 
eq_int: (i =z j)
, 
bfalse: ff
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
Lemmas referenced : 
iff_imp_equal_bool, 
eq_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
equal-wf-base, 
int_subtype_base, 
false_wf, 
iff_weakening_uiff, 
assert_of_eq_int, 
iff_weakening_equal, 
subtype_base_sq, 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
intEquality, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
voidElimination, 
Error :universeIsType, 
isect_memberEquality, 
axiomEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  =  ff  supposing  i  \mneq{}  j
Date html generated:
2019_06_20-AM-11_31_44
Last ObjectModification:
2018_09_26-AM-11_24_55
Theory : bool_1
Home
Index