Nuprl Lemma : eq_int_eq_false

[i,j:ℤ].  (i =z j) ff supposing i ≠ j


Proof




Definitions occuring in Statement :  eq_int: (i =z j) bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] nequal: a ≠ b ∈  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q assert: b ifthenelse: if then else fi  bfalse: ff prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False sq_type: SQType(T) all: x:A. B[x] nequal: a ≠ b ∈  not: ¬A
Lemmas referenced :  iff_imp_equal_bool eq_int_wf bfalse_wf iff_functionality_wrt_iff assert_wf equal-wf-base int_subtype_base false_wf iff_weakening_uiff assert_of_eq_int iff_weakening_equal subtype_base_sq nequal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination intEquality applyEquality sqequalRule independent_functionElimination because_Cache equalityTransitivity equalitySymmetry productElimination independent_pairFormation lambdaFormation promote_hyp instantiate cumulativity dependent_functionElimination voidElimination Error :universeIsType,  isect_memberEquality axiomEquality Error :inhabitedIsType

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  =  ff  supposing  i  \mneq{}  j



Date html generated: 2019_06_20-AM-11_31_44
Last ObjectModification: 2018_09_26-AM-11_24_55

Theory : bool_1


Home Index