Step
*
of Lemma
win2-iff
∀g:SimpleGame. (win2(g)
⇐⇒ ∀p:{p:Pos(g)| Legal1(InitialPos(g);p)} . ∃q:{q:Pos(g)| Legal2(p;q)} . win2(g@q))
BY
{ (Auto
THEN Try ((BLemma `respond-implies-win2` THEN Auto))
THEN RenameVar `s' 2
THEN Unfold `win2` 2
THEN (InstLemma `win2strat-properties` [⌜g⌝;⌜1⌝;⌜s⌝]⋅ THENA Auto)
THEN D -1
THEN Reduce -1) }
1
1. g : SimpleGame
2. s : ∀[n:ℕ]. win2strat(g;n)
3. p : {p:Pos(g)| Legal1(InitialPos(g);p)}
4. s ∈ win2strat(g;1 - 1)
5. s ∈ moves:{f:strat2play(g;0;s)| ||f|| = 2 ∈ ℤ} ⟶ {p:Pos(g)| Legal2(moves[1];p)}
⊢ ∃q:{q:Pos(g)| Legal2(p;q)} . win2(g@q)
Latex:
Latex:
\mforall{}g:SimpleGame
(win2(g) \mLeftarrow{}{}\mRightarrow{} \mforall{}p:\{p:Pos(g)| Legal1(InitialPos(g);p)\} . \mexists{}q:\{q:Pos(g)| Legal2(p;q)\} . win2(g@q))
By
Latex:
(Auto
THEN Try ((BLemma `respond-implies-win2` THEN Auto))
THEN RenameVar `s' 2
THEN Unfold `win2` 2
THEN (InstLemma `win2strat-properties` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN Reduce -1)
Home
Index