Nuprl Lemma : W-uwellfounded
∀[A:Type]. ∀[B:A ⟶ Type].  uWellFnd(W(A;a.B[a]);w1,w2.w1 <  w2)
Proof
Definitions occuring in Statement : 
Wcmp: Wcmp(A;a.B[a];leq)
, 
W: W(A;a.B[a])
, 
bfalse: ff
, 
uwellfounded: uWellFnd(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
Lemmas referenced : 
W-uwellfounded_witness
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    uWellFnd(W(A;a.B[a]);w1,w2.w1  <    w2)
Date html generated:
2019_06_20-PM-00_36_34
Last ObjectModification:
2018_10_15-PM-10_20_59
Theory : co-recursion
Home
Index