Nuprl Lemma : W-uwellfounded

[A:Type]. ∀[B:A ⟶ Type].  uWellFnd(W(A;a.B[a]);w1,w2.w1 <  w2)


Proof




Definitions occuring in Statement :  Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) bfalse: ff uwellfounded: uWellFnd(A;x,y.R[x; y]) uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T
Lemmas referenced :  W-uwellfounded_witness
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut extract_by_obid hypothesis

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    uWellFnd(W(A;a.B[a]);w1,w2.w1  <    w2)



Date html generated: 2019_06_20-PM-00_36_34
Last ObjectModification: 2018_10_15-PM-10_20_59

Theory : co-recursion


Home Index