Step
*
1
of Lemma
Wmul-assoc
1. A : Type
2. B : A ⟶ Type
3. zero : A ⟶ 𝔹
4. succ : A ⟶ 𝔹
5. ∀a:A. (((↑(succ a))
⇒ (Unit ⊆r B[a])) ∧ ((↑(zero a))
⇒ (¬B[a])))
6. a : A
7. ¬↑(succ a)
8. f : B[a] ⟶ W(A;a.B[a])
9. ∀b:B[a]. ∀w2,w1:W(A;a.B[a]). ((w1 * (w2 * f b)) = ((w1 * w2) * f b) ∈ W(A;a.B[a]))
10. w2 : W(A;a.B[a])
11. w1 : W(A;a.B[a])
⊢ (w1 * Wsup(a;λx.(w2 * f x))) = Wsup(a;λx.((w1 * w2) * f x)) ∈ W(A;a.B[a])
BY
{ (RW (AddrC [2] RecUnfoldTopAbC) 0
THEN Unfold `Wsup` 0
THEN Reduce 0
THEN Fold `Wsup` 0
THEN AutoSplit
THEN RepeatFor 2 ((EqCD THEN Auto)))⋅ }
Latex:
Latex:
1. A : Type
2. B : A {}\mrightarrow{} Type
3. zero : A {}\mrightarrow{} \mBbbB{}
4. succ : A {}\mrightarrow{} \mBbbB{}
5. \mforall{}a:A. (((\muparrow{}(succ a)) {}\mRightarrow{} (Unit \msubseteq{}r B[a])) \mwedge{} ((\muparrow{}(zero a)) {}\mRightarrow{} (\mneg{}B[a])))
6. a : A
7. \mneg{}\muparrow{}(succ a)
8. f : B[a] {}\mrightarrow{} W(A;a.B[a])
9. \mforall{}b:B[a]. \mforall{}w2,w1:W(A;a.B[a]). ((w1 * (w2 * f b)) = ((w1 * w2) * f b))
10. w2 : W(A;a.B[a])
11. w1 : W(A;a.B[a])
\mvdash{} (w1 * Wsup(a;\mlambda{}x.(w2 * f x))) = Wsup(a;\mlambda{}x.((w1 * w2) * f x))
By
Latex:
(RW (AddrC [2] RecUnfoldTopAbC) 0
THEN Unfold `Wsup` 0
THEN Reduce 0
THEN Fold `Wsup` 0
THEN AutoSplit
THEN RepeatFor 2 ((EqCD THEN Auto)))\mcdot{}
Home
Index