Step * of Lemma copath-hd_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].
  copath-hd(p) ∈ coW-dom(a.B[a];w) supposing 0 < copath-length(p)
BY
(ProveWfLemma THEN Unfold `coPath` -2 THEN SplitOnHypITE -2  THEN Auto) }


Latex:


Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    copath-hd(p)  \mmember{}  coW-dom(a.B[a];w)  supposing  0  <  copath-length(p)


By


Latex:
(ProveWfLemma  THEN  Unfold  `coPath`  -2  THEN  SplitOnHypITE  -2    THEN  Auto)




Home Index