Step
*
1
1
of Lemma
fix_wf_corec1
1. F : Type ⟶ Type
2. H : Type ⟶ Type
3. Continuous(T.H[T]) ∧ Monotone(T.F[T])
4. G : ⋂T:{T:Type| (F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T)} . (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]
5. n : ℤ
⊢ G fix(G) ∈ H[Top]
BY
{ GenConclAtAddrType ⌜Top ⟶ H[Top]⌝ [2;1]⋅ }
1
.....wf.....
1. F : Type ⟶ Type
2. H : Type ⟶ Type
3. Continuous(T.H[T]) ∧ Monotone(T.F[T])
4. G : ⋂T:{T:Type| (F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T)} . (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]
5. n : ℤ
⊢ G ∈ Top ⟶ H[Top]
2
1. F : Type ⟶ Type
2. H : Type ⟶ Type
3. Continuous(T.H[T]) ∧ Monotone(T.F[T])
4. G : ⋂T:{T:Type| (F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T)} . (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]
5. n : ℤ
6. v : Top ⟶ H[Top]
7. G = v ∈ (Top ⟶ H[Top])
⊢ v fix(v) ∈ H[Top]
Latex:
Latex:
1. F : Type {}\mrightarrow{} Type
2. H : Type {}\mrightarrow{} Type
3. Continuous(T.H[T]) \mwedge{} Monotone(T.F[T])
4. G : \mcap{}T:\{T:Type| (F[T] \msubseteq{}r T) \mwedge{} (corec(T.F[T]) \msubseteq{}r T)\} . (H[T] {}\mrightarrow{} H[F[T]]) \mcap{} Top {}\mrightarrow{} H[Top]
5. n : \mBbbZ{}
\mvdash{} G fix(G) \mmember{} H[Top]
By
Latex:
GenConclAtAddrType \mkleeneopen{}Top {}\mrightarrow{} H[Top]\mkleeneclose{} [2;1]\mcdot{}
Home
Index