Step
*
of Lemma
indexed-F-bisimulation_wf
∀[I:Type]. ∀[F:Type ⟶ Type]. ∀[R:(I ⟶ corec(T.F[T])) ⟶ (I ⟶ corec(T.F[T])) ⟶ ℙ].
x,y.R[x;y] is an T.F[T]-bisimulation (indexed I) ∈ ℙ' supposing ContinuousMonotone(T.F[T])
BY
{ TACTIC:(Auto⋅
THEN (FLemma `corec-ext` [-1] THENA Auto)
THEN ProveWfLemma
THEN DoSubsume
THEN Auto
THEN (SubtypeReasoning THENA Auto)
THEN (D 0 THENA Auto)
THEN SubsumeC ⌜F[corec(T.F[T])]⌝⋅
THEN Try (BackThruSomeHyp')
THEN Auto) }
Latex:
Latex:
\mforall{}[I:Type]. \mforall{}[F:Type {}\mrightarrow{} Type]. \mforall{}[R:(I {}\mrightarrow{} corec(T.F[T])) {}\mrightarrow{} (I {}\mrightarrow{} corec(T.F[T])) {}\mrightarrow{} \mBbbP{}].
x,y.R[x;y] is an T.F[T]-bisimulation (indexed I) \mmember{} \mBbbP{}' supposing ContinuousMonotone(T.F[T])
By
Latex:
TACTIC:(Auto\mcdot{}
THEN (FLemma `corec-ext` [-1] THENA Auto)
THEN ProveWfLemma
THEN DoSubsume
THEN Auto
THEN (SubtypeReasoning THENA Auto)
THEN (D 0 THENA Auto)
THEN SubsumeC \mkleeneopen{}F[corec(T.F[T])]\mkleeneclose{}\mcdot{}
THEN Try (BackThruSomeHyp')
THEN Auto)
Home
Index