Nuprl Lemma : length-copath-tl

[p:Top × Top]. (copath-length(copath-tl(p)) copath-length(p) 1)


Proof




Definitions occuring in Statement :  copath-tl: copath-tl(x) copath-length: copath-length(p) uall: [x:A]. B[x] top: Top product: x:A × B[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-length: copath-length(p) pi1: fst(t) copath-tl: copath-tl(x) subtract: m
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalAxiom productElimination thin sqequalRule productEquality cut extract_by_obid hypothesis

Latex:
\mforall{}[p:Top  \mtimes{}  Top].  (copath-length(copath-tl(p))  \msim{}  copath-length(p)  -  1)



Date html generated: 2018_07_25-PM-01_40_27
Last ObjectModification: 2018_06_01-AM-10_27_28

Theory : co-recursion


Home Index