Nuprl Definition : pcw-path-rel

pcw-path-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) ==
  pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g)
  ∧ (∃n:ℕ((∀i:ℕn. pcw-final-step(f i))) ∧ pcw-final-step(f n) ∧ pcw-final-step(g n))))



Definitions occuring in Statement :  pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) pcw-final-step: pcw-final-step(s) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n
Definitions occuring in definition :  pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) exists: x:A. B[x] nat: all: x:A. B[x] int_seg: {i..j-} natural_number: $n and: P ∧ Q not: ¬A pcw-final-step: pcw-final-step(s) apply: a
FDL editor aliases :  pcw-path-rel

Latex:
pcw-path-rel(P;p.A[p];p,a.B[p;  a];p,a,b.C[p;  a;  b];f;g)  ==
    pcw-consistent-paths(P;p.A[p];p,a.B[p;  a];p,a,b.C[p;  a;  b];f;g)
    \mwedge{}  (\mexists{}n:\mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  (\mneg{}pcw-final-step(f  i)))  \mwedge{}  pcw-final-step(f  n)  \mwedge{}  (\mneg{}pcw-final-step(g  n))))



Date html generated: 2016_05_14-AM-06_12_50
Last ObjectModification: 2015_09_22-PM-05_47_05

Theory : co-recursion


Home Index