Step
*
1
of Lemma
bounded-decidable-nset-finite
1. K : Type
2. K ⊆r ℕ
3. ∀l:ℕ. ((l ∈ K) ∨ (¬(l ∈ K)))
4. B : ℕ
5. ∀k:K. (k ≤ B)
⊢ ∃L:K List. (no_repeats(K;L) ∧ (∀x:K. (x ∈ L)))
BY
{ ((Assert K ⊆r ℕB + 1 BY
((D 0 THENA Auto) THEN (Assert x ≤ B BY Auto) THEN Auto))
THEN (RenameVar `d' 3 THEN (InstLemma `member_upto` [⌜B + 1⌝]⋅ THENA Auto))
THEN (InstLemma `filter_type` [⌜ℕ⌝;⌜λl.isl(d l)⌝;⌜upto(B + 1)⌝]⋅ THENA Auto)
THEN Reduce -1) }
1
1. K : Type
2. K ⊆r ℕ
3. d : ∀l:ℕ. ((l ∈ K) ∨ (¬(l ∈ K)))
4. B : ℕ
5. ∀k:K. (k ≤ B)
6. K ⊆r ℕB + 1
7. ∀i:ℕ. ((i ∈ upto(B + 1))
⇐⇒ i < B + 1)
8. filter(λl.isl(d l);upto(B + 1)) ∈ {x:ℕ| ↑isl(d x)} List
⊢ ∃L:K List. (no_repeats(K;L) ∧ (∀x:K. (x ∈ L)))
Latex:
Latex:
1. K : Type
2. K \msubseteq{}r \mBbbN{}
3. \mforall{}l:\mBbbN{}. ((l \mmember{} K) \mvee{} (\mneg{}(l \mmember{} K)))
4. B : \mBbbN{}
5. \mforall{}k:K. (k \mleq{} B)
\mvdash{} \mexists{}L:K List. (no\_repeats(K;L) \mwedge{} (\mforall{}x:K. (x \mmember{} L)))
By
Latex:
((Assert K \msubseteq{}r \mBbbN{}B + 1 BY
((D 0 THENA Auto) THEN (Assert x \mleq{} B BY Auto) THEN Auto))
THEN (RenameVar `d' 3 THEN (InstLemma `member\_upto` [\mkleeneopen{}B + 1\mkleeneclose{}]\mcdot{} THENA Auto))
THEN (InstLemma `filter\_type` [\mkleeneopen{}\mBbbN{}\mkleeneclose{};\mkleeneopen{}\mlambda{}l.isl(d l)\mkleeneclose{};\mkleeneopen{}upto(B + 1)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Reduce -1)
Home
Index