Step
*
1
of Lemma
finite-Ramsey1
1. c : ℕ
2. ∀c:ℕc. ∀s:ℕc ⟶ ℕ.
∃N:ℕ+
∀g:ℕN ⟶ ℕN ⟶ ℕc. ∃i:ℕc. ∃f:ℕs i ⟶ ℕN. (Inj(ℕs i;ℕN;f) ∧ (∀a,b:ℕs i. (f a < f b
⇒ ((g (f a) (f b)) = i ∈ ℤ))))
3. s : ℕc ⟶ ℕ
4. c = 0 ∈ ℤ
⊢ ∃N:ℕ+
∀g:ℕN ⟶ ℕN ⟶ ℕ0. ∃i:ℕ0. ∃f:ℕs i ⟶ ℕN. (Inj(ℕs i;ℕN;f) ∧ (∀a,b:ℕs i. (f a < f b
⇒ ((g (f a) (f b)) = i ∈ ℤ))))
BY
{ TACTIC:(D 0 With ⌜1⌝ THEN Auto THEN (Assert ⌜ℕ0⌝⋅ THEN Auto) THEN UseWitness ⌜g 0 0⌝⋅ THEN Auto) }
Latex:
Latex:
1. c : \mBbbN{}
2. \mforall{}c:\mBbbN{}c. \mforall{}s:\mBbbN{}c {}\mrightarrow{} \mBbbN{}.
\mexists{}N:\mBbbN{}\msupplus{}
\mforall{}g:\mBbbN{}N {}\mrightarrow{} \mBbbN{}N {}\mrightarrow{} \mBbbN{}c
\mexists{}i:\mBbbN{}c. \mexists{}f:\mBbbN{}s i {}\mrightarrow{} \mBbbN{}N. (Inj(\mBbbN{}s i;\mBbbN{}N;f) \mwedge{} (\mforall{}a,b:\mBbbN{}s i. (f a < f b {}\mRightarrow{} ((g (f a) (f b)) = i))))
3. s : \mBbbN{}c {}\mrightarrow{} \mBbbN{}
4. c = 0
\mvdash{} \mexists{}N:\mBbbN{}\msupplus{}
\mforall{}g:\mBbbN{}N {}\mrightarrow{} \mBbbN{}N {}\mrightarrow{} \mBbbN{}0
\mexists{}i:\mBbbN{}0. \mexists{}f:\mBbbN{}s i {}\mrightarrow{} \mBbbN{}N. (Inj(\mBbbN{}s i;\mBbbN{}N;f) \mwedge{} (\mforall{}a,b:\mBbbN{}s i. (f a < f b {}\mRightarrow{} ((g (f a) (f b)) = i))))
By
Latex:
TACTIC:(D 0 With \mkleeneopen{}1\mkleeneclose{} THEN Auto THEN (Assert \mkleeneopen{}\mBbbN{}0\mkleeneclose{}\mcdot{} THEN Auto) THEN UseWitness \mkleeneopen{}g 0 0\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index