Step
*
of Lemma
gamma-neighbourhood-prop4
∀beta:ℕ ⟶ ℕ. ∀n0:finite-nat-seq(). ∀x,n:ℕ.
((¬((beta x) = 0 ∈ ℤ))
⇒ (∀y:ℕx. ((beta y) = 0 ∈ ℤ))
⇒ (↑isl(gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n)))
⇒ ((gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n)) = (inl 1) ∈ (ℕ?)))
BY
{ (UnivCD THENA Auto) }
1
1. beta : ℕ ⟶ ℕ
2. n0 : finite-nat-seq()
3. x : ℕ
4. n : ℕ
5. ¬((beta x) = 0 ∈ ℤ)
6. ∀y:ℕx. ((beta y) = 0 ∈ ℤ)
7. ↑isl(gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n))
⊢ (gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n)) = (inl 1) ∈ (ℕ?)
Latex:
Latex:
\mforall{}beta:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mforall{}n0:finite-nat-seq(). \mforall{}x,n:\mBbbN{}.
((\mneg{}((beta x) = 0))
{}\mRightarrow{} (\mforall{}y:\mBbbN{}x. ((beta y) = 0))
{}\mRightarrow{} (\muparrow{}isl(gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n)))
{}\mRightarrow{} ((gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n)) = (inl 1)))
By
Latex:
(UnivCD THENA Auto)
Home
Index