Step
*
1
1
of Lemma
gen-bar-rec
1. P : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. M : n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M n f) = (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))\000C))
⊢ ↓(λn,s. (spector-bar-rec(λn,s. if M n s then 0 else n + 1 fi λn,s. case M n s
                                                                  of inl(x) =>
                                                                  let k,F = x 
                                                                  in F n
                                                                  | inr(x) =>
                                                                  ⊥;ind;n;s) ∈ P[n;s])) 
   0 
   seq-normalize(0;⊥)
BY
{ (Refine_SquashedBarInduction ⌜ℕ⌝ ⌜λn,s. (↑isl(M n s))⌝ `n' `s' `m' `x' `w'⋅ THEN AllReduce THEN Try (Complete (Auto)))\000C }
1
1. P : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. M : n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M n f) = (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))\000C))
6. s : ℕ ⟶ ℕ
⊢ ↓∃n:ℕ. (↑isl(M n seq-normalize(n;s)))
2
1. P : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. M : n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M n f) = (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))\000C))
6. n : ℕ
7. s : ℕn ⟶ ℕ
8. w : ↑isl(M n s)
⊢ spector-bar-rec(λn,s. if M n s then 0 else n + 1 fi λn,s. case M n s of inl(x) => let k,F = x in F n | inr(x) => ⊥;in\000Cd;n;s)
  ∈ P[n;s]
3
1. P : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. P[n + 1;s.m@n]) 
⇒ P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. M : n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M n f) = (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))\000C))
6. n : ℕ
7. s : ℕn ⟶ ℕ
8. w : ∀m:ℕ
         (spector-bar-rec(λn,s. if M n s then 0 else n + 1 fi λn,s. case M n s
                                                                 of inl(x) =>
                                                                 let k,F = x 
                                                                 in F n
                                                                 | inr(x) =>
                                                                 ⊥;ind;n + 1;λx.if x=n then m else (s x))
          ∈ P[n + 1;λx.if x=n then m else (s x)])
⊢ spector-bar-rec(λn,s. if M n s then 0 else n + 1 fi λn,s. case M n s of inl(x) => let k,F = x in F n | inr(x) => ⊥;in\000Cd;n;s)
  ∈ P[n;s]
Latex:
Latex:
1.  P  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}@i'
2.  ind  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  P[n  +  1;s.m@n])  {}\mRightarrow{}  P[n;s])@i
3.  bar  :  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  P[m;f])@i
4.  M  :  n:\mBbbN{}  {}\mrightarrow{}  s:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (k:\mBbbN{}n  \mtimes{}  (\mforall{}m:\{k...\}.  P[m;ext2Baire(n;s;0)])?)@i
5.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              \mexists{}p:\mforall{}m:\{k...\}.  P[m;ext2Baire(n;f;0)]
                (((M  n  f)  =  (inl  <k,  p>))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))
\mvdash{}  \mdownarrow{}(\mlambda{}n,s.  (spector-bar-rec(\mlambda{}n,s.  if  M  n  s  then  0  else  n  +  1  fi  ;\mlambda{}n,s.  case  M  n  s
                                                                                                                                    of  inl(x)  =>
                                                                                                                                    let  k,F  =  x 
                                                                                                                                    in  F  n
                                                                                                                                    |  inr(x)  =>
                                                                                                                                    \mbot{};ind;n;s)  \mmember{}  P[n;s])) 
      0 
      seq-normalize(0;\mbot{})
By
Latex:
(Refine\_SquashedBarInduction  \mkleeneopen{}\mBbbN{}\mkleeneclose{}  \mkleeneopen{}\mlambda{}n,s.  (\muparrow{}isl(M  n  s))\mkleeneclose{}  `n'  `s'  `m'  `x'  `w'\mcdot{}
  THEN  AllReduce
  THEN  Try  (Complete  (Auto)))
Home
Index