Step * 1 1 of Lemma gen-bar-rec


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M f) (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))\000C))
⊢ ↓n,s. (spector-bar-rec(λn,s. if then else fi n,s. case s
                                                                  of inl(x) =>
                                                                  let k,F 
                                                                  in n
                                                                  inr(x) =>
                                                                  ⊥;ind;n;s) ∈ P[n;s])) 
   
   seq-normalize(0;⊥)
BY
(Refine_SquashedBarInduction ⌜ℕ⌝ ⌜λn,s. (↑isl(M s))⌝ `n' `s' `m' `x' `w'⋅ THEN AllReduce THEN Try (Complete (Auto)))\000C }

1
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M f) (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))\000C))
6. : ℕ ⟶ ℕ
⊢ ↓∃n:ℕ(↑isl(M seq-normalize(n;s)))

2
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M f) (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))\000C))
6. : ℕ
7. : ℕn ⟶ ℕ
8. : ↑isl(M s)
⊢ spector-bar-rec(λn,s. if then else fi n,s. case of inl(x) => let k,F in inr(x) => ⊥;in\000Cd;n;s)
  ∈ P[n;s]

3
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ@i'
2. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕP[n 1;s.m@n])  P[n;s])@i
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. P[m;f])@i
4. n:ℕ ⟶ s:(ℕn ⟶ ℕ) ⟶ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;s;0)])?)@i
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       ∃p:∀m:{k...}. P[m;ext2Baire(n;f;0)]
        (((M f) (inl <k, p>) ∈ (k:ℕn × (∀m:{k...}. P[m;ext2Baire(n;f;0)])?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))\000C))
6. : ℕ
7. : ℕn ⟶ ℕ
8. : ∀m:ℕ
         (spector-bar-rec(λn,s. if then else fi n,s. case s
                                                                 of inl(x) =>
                                                                 let k,F 
                                                                 in n
                                                                 inr(x) =>
                                                                 ⊥;ind;n 1;λx.if x=n then else (s x))
          ∈ P[n 1;λx.if x=n then else (s x)])
⊢ spector-bar-rec(λn,s. if then else fi n,s. case of inl(x) => let k,F in inr(x) => ⊥;in\000Cd;n;s)
  ∈ P[n;s]


Latex:


Latex:

1.  P  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}@i'
2.  ind  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  P[n  +  1;s.m@n])  {}\mRightarrow{}  P[n;s])@i
3.  bar  :  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  P[m;f])@i
4.  M  :  n:\mBbbN{}  {}\mrightarrow{}  s:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (k:\mBbbN{}n  \mtimes{}  (\mforall{}m:\{k...\}.  P[m;ext2Baire(n;s;0)])?)@i
5.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              \mexists{}p:\mforall{}m:\{k...\}.  P[m;ext2Baire(n;f;0)]
                (((M  n  f)  =  (inl  <k,  p>))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))
\mvdash{}  \mdownarrow{}(\mlambda{}n,s.  (spector-bar-rec(\mlambda{}n,s.  if  M  n  s  then  0  else  n  +  1  fi  ;\mlambda{}n,s.  case  M  n  s
                                                                                                                                    of  inl(x)  =>
                                                                                                                                    let  k,F  =  x 
                                                                                                                                    in  F  n
                                                                                                                                    |  inr(x)  =>
                                                                                                                                    \mbot{};ind;n;s)  \mmember{}  P[n;s])) 
      0 
      seq-normalize(0;\mbot{})


By


Latex:
(Refine\_SquashedBarInduction  \mkleeneopen{}\mBbbN{}\mkleeneclose{}  \mkleeneopen{}\mlambda{}n,s.  (\muparrow{}isl(M  n  s))\mkleeneclose{}  `n'  `s'  `m'  `x'  `w'\mcdot{}
  THEN  AllReduce
  THEN  Try  (Complete  (Auto)))




Home Index