Step
*
of Lemma
general-cantor-to-int-bounded
∀B:ℕ ⟶ ℕ+. ∀F:(n:ℕ ⟶ ℕB[n]) ⟶ ℤ. ∃bnd:ℕ. ∀f:n:ℕ ⟶ ℕB[n]. (|F f| ≤ bnd)
BY
{ (Auto
THEN (InstLemma `cantor-to-general-cantor` [⌜B⌝]⋅ THENA Auto)
THEN ExRepD
THEN (InstLemma `cantor-to-int-bounded` [⌜F o f⌝]⋅ THENA Auto)
THEN (ParallelLast THEN RepUR ``compose`` -1)
THEN (D 0 THENA Auto)) }
1
1. B : ℕ ⟶ ℕ+
2. F : (n:ℕ ⟶ ℕB[n]) ⟶ ℤ
3. f : (ℕ ⟶ 𝔹) ⟶ n:ℕ ⟶ ℕB[n]
4. Surj(ℕ ⟶ 𝔹;n:ℕ ⟶ ℕB[n];f)
5. ∀k:ℕ. ∃j:ℕ. ∀p,q:ℕ ⟶ 𝔹. ((p = q ∈ (ℕj ⟶ 𝔹))
⇒ ((f p) = (f q) ∈ (n:ℕk ⟶ ℕB[n])))
6. B1 : ℕ
7. ∀f@0:ℕ ⟶ 𝔹. (|F (f f@0)| ≤ B1)
8. f1 : n:ℕ ⟶ ℕB[n]
⊢ |F f1| ≤ B1
Latex:
Latex:
\mforall{}B:\mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}. \mforall{}F:(n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n]) {}\mrightarrow{} \mBbbZ{}. \mexists{}bnd:\mBbbN{}. \mforall{}f:n:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[n]. (|F f| \mleq{} bnd)
By
Latex:
(Auto
THEN (InstLemma `cantor-to-general-cantor` [\mkleeneopen{}B\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN (InstLemma `cantor-to-int-bounded` [\mkleeneopen{}F o f\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (ParallelLast THEN RepUR ``compose`` -1)
THEN (D 0 THENA Auto))
Home
Index