Step
*
of Lemma
monotone-bar-induction-strict2
∀B,Q:n:ℕ ⟶ {s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} ⟶ ℙ.
((∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
(B[n;s]
⇒ (∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n)
⇒ B[n + 1;s.m@n]))))
⇒ (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} . (B[n;s]
⇒ ⇃(Q[n;s])))
⇒ (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
((∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n)
⇒ ⇃(Q[n + 1;s.m@n])))
⇒ ⇃(Q[n;s])))
⇒ (∀alpha:StrictInc. ∃m:ℕ. B[m;alpha])
⇒ ⇃(Q[0;λx.⊥]))
BY
{ Auto }
1
1. B : n:ℕ ⟶ {s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} ⟶ ℙ
2. Q : n:ℕ ⟶ {s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} ⟶ ℙ
3. ∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
(B[n;s]
⇒ (∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n)
⇒ B[n + 1;s.m@n])))
4. ∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} . (B[n;s]
⇒ ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
((∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n)
⇒ ⇃(Q[n + 1;s.m@n])))
⇒ ⇃(Q[n;s]))
6. ∀alpha:StrictInc. ∃m:ℕ. B[m;alpha]
⊢ ⇃(Q[0;λx.⊥])
Latex:
Latex:
\mforall{}B,Q:n:\mBbbN{} {}\mrightarrow{} \{s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}| strictly-increasing-seq(n;s)\} {}\mrightarrow{} \mBbbP{}.
((\mforall{}n:\mBbbN{}. \mforall{}s:\{s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}| strictly-increasing-seq(n;s)\} .
(B[n;s] {}\mRightarrow{} (\mforall{}m:\mBbbN{}. (strictly-increasing-seq(n + 1;s.m@n) {}\mRightarrow{} B[n + 1;s.m@n]))))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\{s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}| strictly-increasing-seq(n;s)\} . (B[n;s] {}\mRightarrow{} \00D9(Q[n;s])))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\{s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}| strictly-increasing-seq(n;s)\} .
((\mforall{}m:\mBbbN{}. (strictly-increasing-seq(n + 1;s.m@n) {}\mRightarrow{} \00D9(Q[n + 1;s.m@n]))) {}\mRightarrow{} \00D9(Q[n;s])))
{}\mRightarrow{} (\mforall{}alpha:StrictInc. \mexists{}m:\mBbbN{}. B[m;alpha])
{}\mRightarrow{} \00D9(Q[0;\mlambda{}x.\mbot{}]))
By
Latex:
Auto
Home
Index