Step
*
1
1
1
1
of Lemma
monotone-bar-induction3
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
7. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
∃n:ℕ. ∃k:ℕn. ((B k f) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
9. n : ℕ
10. s : ℕn ⟶ ℕ
11. ↑isl(M n s)
⊢ ⇃(Q[n;s])
BY
{ TACTIC:((InstHyp [⌜ext2Baire(n;s;0)⌝] (-4)⋅ THENA Auto) THEN ExRepD THEN RenameVar `i' (-4)) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
7. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
∃n:ℕ. ∃k:ℕn. ((B k f) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
9. n : ℕ
10. s : ℕn ⟶ ℕ
11. ↑isl(M n s)
12. n@0 : ℕ
13. i : ℕn@0
14. B i ext2Baire(n;s;0)
15. (M n@0 ext2Baire(n;s;0)) = (inl i) ∈ (ℕ?)
16. ∀m:ℕ. ((↑isl(M m ext2Baire(n;s;0)))
⇒ ((M m ext2Baire(n;s;0)) = (inl i) ∈ (ℕ?)))
⊢ ⇃(Q[n;s])
Latex:
Latex:
1. B : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
2. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
3. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} (\mforall{}m:\mBbbN{}. B[n + 1;s.m@n]))
4. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} \00D9(Q[n;s]))
5. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s]))
6. bar : \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}m:\mBbbN{}. B[m;alpha])
7. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
8. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}. \mexists{}k:\mBbbN{}n. ((B k f) \mwedge{} ((M n f) = (inl k)) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl k)))))
9. n : \mBbbN{}
10. s : \mBbbN{}n {}\mrightarrow{} \mBbbN{}
11. \muparrow{}isl(M n s)
\mvdash{} \00D9(Q[n;s])
By
Latex:
TACTIC:((InstHyp [\mkleeneopen{}ext2Baire(n;s;0)\mkleeneclose{}] (-4)\mcdot{} THENA Auto) THEN ExRepD THEN RenameVar `i' (-4))
Home
Index