Step * 2 of Lemma monotone-bar-induction8-implies-3


1. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
      (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
      ⇃(Q[0;λx.⊥]))
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
6. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
7. ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
8. ⇃(Q[0;λx.⊥])
⊢ ⇃(Q[0;λx.⊥])
BY
Auto }


Latex:


Latex:

1.  \mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
          ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
          {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \00D9(Q[m;f])))
          {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))
2.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n]))
5.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
6.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
7.  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha])
8.  \00D9(Q[0;\mlambda{}x.\mbot{}])
\mvdash{}  \00D9(Q[0;\mlambda{}x.\mbot{}])


By


Latex:
Auto




Home Index