Step
*
of Lemma
strong-continuity2_biject_retract-ext
∀[T,S,U:Type].
∀r:ℕ ⟶ U
((U ⊆r ℕ)
⇒ (∀x:U. ((r x) = x ∈ U))
⇒ (∀g:S ⟶ U
(Bij(S;U;g)
⇒ (∀F:(ℕ ⟶ T) ⟶ S
(strong-continuity2(T;g o F)
⇒ (∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
∀f:ℕ ⟶ T
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (S?)))
∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (S?) supposing ↑isl(M n f)))))))))
BY
{ Extract of Obid: strong-continuity2_biject_retract
normalizes to:
λr,_,_,g,bi,F,sc2. let M,ea = sc2
in <λn,f. case M n f of inl(m) => inl let x,y = bi in fst((y (r m))) | inr(x) => inr x
, λf.<<let x,y = ea f in fst(x), Ax>, λn.Ax>
>
finishing with Auto }
Latex:
Latex:
\mforall{}[T,S,U:Type].
\mforall{}r:\mBbbN{} {}\mrightarrow{} U
((U \msubseteq{}r \mBbbN{})
{}\mRightarrow{} (\mforall{}x:U. ((r x) = x))
{}\mRightarrow{} (\mforall{}g:S {}\mrightarrow{} U
(Bij(S;U;g)
{}\mRightarrow{} (\mforall{}F:(\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} S
(strong-continuity2(T;g o F)
{}\mRightarrow{} (\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (S?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} T
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f))))
\mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))))))))
By
Latex:
Extract of Obid: strong-continuity2\_biject\_retract
normalizes to:
\mlambda{}r,$_{}$,$_{}$,g,bi,F,sc2. let M,ea = sc2
in <\mlambda{}n,f. case M n f
of inl(m) =>
inl let x,y = bi
in fst((y (r m)))
| inr(x) =>
inr x
, \mlambda{}f.<<let x,y = ea f in fst(x), Ax>, \mlambda{}n.Ax>
>
finishing with Auto
Home
Index