Step
*
1
1
1
1
2
2
1
1
of Lemma
uniform-continuity-pi-search-prop1
1. P : ℕ ⟶ ℙ
2. m : ℤ
3. 0 < m
4. ∀x:ℕ
((∃n:{x..(x + (m - 1)) + 1-}. P[n])
⇒ (∀G:∀m:ℕx + (m - 1). Dec(P[m])
(uniform-continuity-pi-search(
G;
x + (m - 1);x) ∈ {k:{x..(x + (m - 1)) + 1-}| P[k] ∧ (∀m:{x..k-}. (¬P[m]))} )))
5. x : ℕ
6. ¬((x + m) ≤ x)
7. n : ℤ
8. x ≤ n < (x + m) + 1
9. P[n]
10. G : ∀m:ℕx + m. Dec(P[m])
11. y : ¬P[x]
12. (G x) = (inr y ) ∈ Dec(P[x])
13. x = n ∈ ℤ
⊢ ∃n:{x + 1..(x + m) + 1-}. P[n]
BY
{ (HypSubst' (-1) (-3) THEN Auto) }
Latex:
Latex:
1. P : \mBbbN{} {}\mrightarrow{} \mBbbP{}
2. m : \mBbbZ{}
3. 0 < m
4. \mforall{}x:\mBbbN{}
((\mexists{}n:\{x..(x + (m - 1)) + 1\msupminus{}\}. P[n])
{}\mRightarrow{} (\mforall{}G:\mforall{}m:\mBbbN{}x + (m - 1). Dec(P[m])
(uniform-continuity-pi-search(
G;
x + (m - 1);x) \mmember{} \{k:\{x..(x + (m - 1)) + 1\msupminus{}\}| P[k] \mwedge{} (\mforall{}m:\{x..k\msupminus{}\}. (\mneg{}P[m]))\} )))
5. x : \mBbbN{}
6. \mneg{}((x + m) \mleq{} x)
7. n : \mBbbZ{}
8. x \mleq{} n < (x + m) + 1
9. P[n]
10. G : \mforall{}m:\mBbbN{}x + m. Dec(P[m])
11. y : \mneg{}P[x]
12. (G x) = (inr y )
13. x = n
\mvdash{} \mexists{}n:\{x + 1..(x + m) + 1\msupminus{}\}. P[n]
By
Latex:
(HypSubst' (-1) (-3) THEN Auto)
Home
Index