Step
*
of Lemma
unsquashed-BIM-implies-unsquashed-weak-continuity
(∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
   ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s]))
   
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;f]))
   
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ.  (B[n;s] 
⇒ B[n + 1;s.m@n]))
   
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s]))
   
⇒ Q[0;λx.⊥]))
⇒ (∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀a:ℕ ⟶ ℕ.  ∃n:ℕ. ∀b:ℕ ⟶ ℕ. ((∀i:ℕn. ((a i) = (b i) ∈ ℕ)) 
⇒ ((F a) = (F b) ∈ ℕ)))
BY
{ ((D 0 THENA Auto) THEN (UnivCD THENA Auto)) }
1
1. ∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s]))
     
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. B[n;f]))
     
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ.  (B[n;s] 
⇒ B[n + 1;s.m@n]))
     
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s]))
     
⇒ Q[0;λx.⊥])
2. F : (ℕ ⟶ ℕ) ⟶ ℕ
3. a : ℕ ⟶ ℕ
⊢ ∃n:ℕ. ∀b:ℕ ⟶ ℕ. ((∀i:ℕn. ((a i) = (b i) ∈ ℕ)) 
⇒ ((F a) = (F b) ∈ ℕ))
Latex:
Latex:
(\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
      ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  B[n;f]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (B[n;s]  {}\mRightarrow{}  B[n  +  1;s.m@n]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  Q[0;\mlambda{}x.\mbot{}]))
{}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  ((a  i)  =  (b  i)))  {}\mRightarrow{}  ((F  a)  =  (F  b))))
By
Latex:
((D  0  THENA  Auto)  THEN  (UnivCD  THENA  Auto))
Home
Index